Commit affd3446 authored by Mark Hoffmann's avatar Mark Hoffmann Committed by Mitar

JPL-manual primitive annotations

parent 40769afb
{
"context": "TESTING",
"created": "2019-04-26T01:09:44.343543Z",
"id": "2aa021cf-4dfc-4d46-82bc-738017555bd2",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.2.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"name": "Denormalize datasets",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"use_gpu": {
"data": true,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "176e7277-fe37-402b-86e6-bdb7f7a9cf89",
"name": "retina_net",
"python_path": "d3m.primitives.object_detection.retina_net.JPLPrimitives",
"version": "0.1.0"
},
"type": "PRIMITIVE"
}
]
}
---
context: TESTING
created: '2019-04-26T01:09:44.343543Z'
id: 2aa021cf-4dfc-4d46-82bc-738017555bd2
inputs:
- name: inputs
outputs:
- data: steps.4.produce
name: output predictions
schema: https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json
steps:
# STEP 0
- arguments:
inputs:
data: inputs.0
type: CONTAINER
outputs:
- id: produce
primitive:
id: f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e
name: Denormalize datasets
python_path: d3m.primitives.data_transformation.denormalize.Common
version: 0.2.0
type: PRIMITIVE
# STEP 1
- arguments:
inputs:
data: steps.0.produce
type: CONTAINER
outputs:
- id: produce
primitive:
id: 4b42ce1e-9b98-4a25-b68e-fad13311eb65
name: Extract a DataFrame from a Dataset
python_path: d3m.primitives.data_transformation.dataset_to_dataframe.Common
version: 0.3.0
type: PRIMITIVE
# STEP 2
- arguments:
inputs: {data: steps.1.produce, type: CONTAINER}
hyperparams:
parse_semantic_types: {data: ["http://schema.org/Boolean",
"http://schema.org/Integer",
"http://schema.org/Float",
"https://metadata.datadrivendiscovery.org/types/FloatVector",
"http://schema.org/DateTime"
], type: VALUE}
outputs:
- {id: produce}
primitive:
id: d510cb7a-1782-4f51-b44c-58f0236e47c7
name: 'Parses strings into their types'
python_path: d3m.primitives.data_transformation.column_parser.DataFrameCommon
version: 0.5.0
type: PRIMITIVE
# STEP 3
- arguments:
inputs:
data: steps.2.produce
type: CONTAINER
hyperparams:
semantic_types:
data:
- 'https://metadata.datadrivendiscovery.org/types/TrueTarget'
type: VALUE
outputs:
-
id: produce
primitive:
id: 4503a4c6-42f7-45a1-a1d4-ed69699cf5e1
name: 'Extracts columns by semantic type'
python_path: d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon
version: 0.2.0
type: PRIMITIVE
# STEP 4
- arguments:
inputs:
data: steps.1.produce
type: CONTAINER
outputs:
data: steps.2.produce
type: CONTAINER
hyperparams:
use_gpu:
data: false
type: VALUE
batch_size:
data: 3
type: VALUE
outputs:
- id: produce
primitive:
id: 176e7277-fe37-402b-86e6-bdb7f7a9cf89
name: retina_net
python_path: d3m.primitives.object_detection.retina_net.JPLPrimitives
version: 0.2.0
type: PRIMITIVE
# STEP 5
#- arguments:
# inputs:
# data: steps.2.produce
# type: CONTAINER
# reference:
# data: steps.2.produce
# type: CONTAINER
# outputs:
# -
# id: produce
# primitive:
# id: 8d38b340-f83f-4877-baaa-162f8e551736
# name: 'Construct pipeline predictions output'
# python_path: d3m.primitives.data_transformation.construct_predictions.DataFrameCommon
# version: 0.3.0
# type: PRIMITIVE
\ No newline at end of file
{
"id": "176e7277-fe37-402b-86e6-bdb7f7a9cf89",
"version": "0.1.0",
"version": "0.2.0",
"name": "retina_net",
"keywords": [
"neural network",
......@@ -18,7 +18,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://gitlab.com/datadrivendiscovery/jpl-primitives.git@c879400c6985982a419e8fd439b8eed86e480420#egg=jpl_primitives"
"package_uri": "git+https://gitlab.com/datadrivendiscovery/jpl-primitives.git@4058da7d3ee87fa1d968514d8bf121b6101fa69c#egg=jpl_primitives"
}
],
"python_path": "d3m.primitives.object_detection.retina_net.JPLPrimitives",
......@@ -96,14 +96,14 @@
],
"description": "Whether or not to use GPU for compute. This should ALWAYS be turned on."
},
"use_input_columns": {
"use_inputs_columns": {
"type": "d3m.metadata.hyperparams.Set",
"default": [],
"structural_type": "typing.Sequence[int]",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "A set of column indices to force primitive to use as training input. If any specified column cannot be parsed, it is skipped.",
"description": "A set of inputs column indices to force primitive to operate on. If any specified column cannot be used, it is skipped.",
"elements": {
"type": "d3m.metadata.hyperparams.Hyperparameter",
"default": -1,
......@@ -113,14 +113,14 @@
"is_configuration": false,
"min_size": 0
},
"use_output_columns": {
"exclude_inputs_columns": {
"type": "d3m.metadata.hyperparams.Set",
"default": [],
"structural_type": "typing.Sequence[int]",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "A set of column indices to force primitive to use as training target. If any specified column cannot be parsed, it is skipped.",
"description": "A set of inputs column indices to not operate on. Applicable only if \"use_columns\" is not provided.",
"elements": {
"type": "d3m.metadata.hyperparams.Hyperparameter",
"default": -1,
......@@ -130,14 +130,14 @@
"is_configuration": false,
"min_size": 0
},
"exclude_input_columns": {
"use_outputs_columns": {
"type": "d3m.metadata.hyperparams.Set",
"default": [],
"structural_type": "typing.Sequence[int]",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "A set of column indices to not use as training inputs. Applicable only if \"use_columns\" is not provided.",
"description": "A set of outputs column indices to force primitive to operate on. If any specified column cannot be used, it is skipped.",
"elements": {
"type": "d3m.metadata.hyperparams.Hyperparameter",
"default": -1,
......@@ -147,14 +147,14 @@
"is_configuration": false,
"min_size": 0
},
"exclude_output_columns": {
"exclude_outputs_columns": {
"type": "d3m.metadata.hyperparams.Set",
"default": [],
"structural_type": "typing.Sequence[int]",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "A set of column indices to not use as training target. Applicable only if \"use_columns\" is not provided.",
"description": "A set of outputs column indices to not operate on. Applicable only if \"use_columns\" is not provided.",
"elements": {
"type": "d3m.metadata.hyperparams.Hyperparameter",
"default": -1,
......@@ -166,44 +166,17 @@
},
"return_result": {
"type": "d3m.metadata.hyperparams.Enumeration",
"default": "new",
"default": "append",
"structural_type": "str",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "Should parsed columns be appended, should they replace original columns, or should only parsed columns be returned? This hyperparam is ignored if use_semantic_types is set to false.",
"description": "Should resulting columns be appended, should they replace original columns, or should only resulting columns be returned?",
"values": [
"append",
"replace",
"new"
]
},
"use_semantic_types": {
"type": "d3m.metadata.hyperparams.UniformBool",
"default": true,
"structural_type": "bool",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "Controls whether semantic_types metadata will be used for filtering columns in input dataframe. Setting this to false makes the code ignore return_result and will produce only the output dataframe"
},
"add_index_columns": {
"type": "d3m.metadata.hyperparams.UniformBool",
"default": false,
"structural_type": "bool",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "Also include primary index columns if input data has them. Applicable only if \"return_result\" is set to \"new\"."
},
"error_on_no_input": {
"type": "d3m.metadata.hyperparams.UniformBool",
"default": true,
"structural_type": "bool",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "Throw an exception if no input column is selected/provided. Defaults to true to behave like sklearn. To prevent pipelines from breaking set this to False."
}
},
"arguments": {
......@@ -369,5 +342,5 @@
},
"structural_type": "jpl_primitives.retina_net.RetinaNet",
"description": "Implementation of RetinaNet for object detection https://arxiv.org/abs/1708.02002\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.",
"digest": "731da74c105839c1f6898900972b178d15638c27f810215b4dd490813fb5d2aa"
}
\ No newline at end of file
"digest": "6986424941f930410893e20669ba3993589714b7278bc0a5389206cc63227f66"
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment