Commit aebd42ab authored by Mitar's avatar Mitar
Browse files

Merge branch 'v8.0.6' into 'master'

update pipelines

See merge request !152
parents 36d790a9 76ef7331
Pipeline #111561641 passed with stages
in 85 minutes and 48 seconds
{
"created": "2020-01-16T20:20:02.485547Z",
"digest": "ab9ea980c802987c554cb998743ad98354d80e7c4a24e05631bbe78615e4de78",
"created": "2020-01-22T21:24:24.087664Z",
"digest": "7023a524b831aa9ef67b52768edeb1463ad772ef4624f697790ff44392052cd4",
"id": "ta1-perspecta-rf_uu5_heartstatlog_MIN_METADATA",
"inputs": [
{
......@@ -28,7 +28,7 @@
}
],
"primitive": {
"digest": "721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1",
"digest": "00d77b6d0cea1a126f3d6a96c8b332a10d3d429a811956bfeea58c4f6d7bba73",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
......@@ -64,7 +64,7 @@
}
],
"primitive": {
"digest": "c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e",
"digest": "76c16806205234753dc66ea3ffa1f6d2ce6e4911794baeb3a8a375fcc2d6f378",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
......@@ -93,7 +93,7 @@
}
],
"primitive": {
"digest": "8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741",
"digest": "a0e9f18bfab3cfae1fb70a53567bf276660e959199c0c68d9ac310e81dab1e5e",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
......@@ -131,7 +131,7 @@
}
],
"primitive": {
"digest": "de71ca92ff0c4476f95a4c9bedb2a937b4aba5eaac5e2767ebe8a3c63785e20e",
"digest": "1fce9009dd2bb5e9696366a51c3a4b867106223a553ab1a09c328b2f6284b0a5",
"id": "5bb6d960-8b6d-4d90-aa8d-88bb9994a20a",
"name": "lupi_rf.LupiRFClassifier",
"python_path": "d3m.primitives.classification.lupi_rf.LupiRFClassifier",
......@@ -156,7 +156,7 @@
}
],
"primitive": {
"digest": "72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772",
"digest": "588193dfc64501dc9fde6fc6332861a27f2ec3219130bdc50f3c9687af7a0bcb",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
......
{
"created": "2020-01-16T20:17:14.369065Z",
"digest": "7e8a7461d9912f31060cc1f661f8db6c2d1428ce3eb44c38ee731edb4b7a751a",
"created": "2020-01-22T21:23:38.660990Z",
"digest": "069e149e8698c05ca1b01e08c9d6e90c9ee66c397fedd5b9c5a82f083c8b862a",
"id": "ta1-perspecta-rf_uu6_hepatitis_MIN_METADATA",
"inputs": [
{
......@@ -28,7 +28,7 @@
}
],
"primitive": {
"digest": "721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1",
"digest": "00d77b6d0cea1a126f3d6a96c8b332a10d3d429a811956bfeea58c4f6d7bba73",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
......@@ -64,7 +64,7 @@
}
],
"primitive": {
"digest": "c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e",
"digest": "76c16806205234753dc66ea3ffa1f6d2ce6e4911794baeb3a8a375fcc2d6f378",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
......@@ -93,7 +93,7 @@
}
],
"primitive": {
"digest": "8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741",
"digest": "a0e9f18bfab3cfae1fb70a53567bf276660e959199c0c68d9ac310e81dab1e5e",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
......@@ -131,7 +131,7 @@
}
],
"primitive": {
"digest": "de71ca92ff0c4476f95a4c9bedb2a937b4aba5eaac5e2767ebe8a3c63785e20e",
"digest": "1fce9009dd2bb5e9696366a51c3a4b867106223a553ab1a09c328b2f6284b0a5",
"id": "5bb6d960-8b6d-4d90-aa8d-88bb9994a20a",
"name": "lupi_rf.LupiRFClassifier",
"python_path": "d3m.primitives.classification.lupi_rf.LupiRFClassifier",
......@@ -156,7 +156,7 @@
}
],
"primitive": {
"digest": "72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772",
"digest": "588193dfc64501dc9fde6fc6332861a27f2ec3219130bdc50f3c9687af7a0bcb",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
......
{
"created": "2019-12-15T01:37:49.900197Z",
"digest": "6ad5729d9e1a2ae570850e57366758062a7eddc5acf56e9b2c8beb40062d18f9",
"id": "ta1-perspecta-lupimfa_uu5_heartstatlog_s0_linear",
"created": "2020-01-22T21:28:09.310584Z",
"digest": "2d2b5bc776a3b92a51877ff61e38c146481d37b3476e0573cc80a3bc72e84f0e",
"id": "ta1-perspecta-rf_uu7_pima_diabetes_MIN_METADATA",
"inputs": [
{
"name": "inputs"
......@@ -9,7 +9,7 @@
],
"outputs": [
{
"data": "steps.7.produce",
"data": "steps.4.produce",
"name": "output predictions"
}
],
......@@ -28,28 +28,7 @@
}
],
"primitive": {
"digest": "0d5c62917bbfd451ad277226c850b58086ba45fb3a3159dcdfe47cb299ebf2dc",
"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"name": "Denormalize datasets",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "b1ac4776f0e916f707a6b6a74f3a36c56ea2eb37c6a255d986faf21855446073",
"digest": "00d77b6d0cea1a126f3d6a96c8b332a10d3d429a811956bfeea58c4f6d7bba73",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
......@@ -60,42 +39,23 @@
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"C_gridsearch": {
"data": {
"encoding": "pickle",
"value": "gANHwBAAAAAAAABHQDSAAAAAAABHP+zMzMzMzM2HcQAu"
},
"type": "VALUE"
},
"exclude_input_columns": {
"detect_semantic_types": {
"data": [
0
"http://schema.org/Boolean",
"https://metadata.datadrivendiscovery.org/types/CategoricalData",
"http://schema.org/Integer",
"http://schema.org/Float",
"http://schema.org/Text",
"https://metadata.datadrivendiscovery.org/types/Attribute",
"https://metadata.datadrivendiscovery.org/types/TrueTarget",
"https://metadata.datadrivendiscovery.org/types/PrimaryKey"
],
"type": "VALUE"
},
"gamma_gridsearch": {
"data": {
"encoding": "pickle",
"value": "gANHwBAAAAAAAABHQDSAAAAAAABHP+zMzMzMzM2HcQAu"
},
"type": "VALUE"
},
"regressor_type": {
"data": "linear",
"type": "VALUE"
},
"use_scree": {
"data": false,
"type": "VALUE"
},
"use_semantic_types": {
"data": true,
"type": "VALUE"
}
},
"outputs": [
......@@ -104,18 +64,18 @@
}
],
"primitive": {
"digest": "abe078a87eea9056cf201c56c74c286d1c5706807ba46aa5d49b0df3d3764ee2",
"id": "5361ebf6-9e5a-4ce5-b73c-3babf12f1941",
"name": "lupi_mfa.lupi_mfa.LupiMFA",
"python_path": "d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA",
"version": "v6.0.0"
"digest": "76c16806205234753dc66ea3ffa1f6d2ce6e4911794baeb3a8a375fcc2d6f378",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
......@@ -133,7 +93,7 @@
}
],
"primitive": {
"digest": "f828f4fbd3ce894ef26a264e53ac98c79d689b653b0eda497b069e42ddfebef4",
"digest": "a0e9f18bfab3cfae1fb70a53567bf276660e959199c0c68d9ac310e81dab1e5e",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
......@@ -146,59 +106,9 @@
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "631c29b4a7853a396053e6226a230d4efe0926ccc6e73417b886ca9a62c469ef",
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"name": "Parses strings into their types",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"version": "0.6.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "f828f4fbd3ce894ef26a264e53ac98c79d689b653b0eda497b069e42ddfebef4",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.5.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.3.produce",
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
......@@ -211,7 +121,7 @@
"type": "VALUE"
},
"n_estimators": {
"data": 100,
"data": 1300,
"type": "VALUE"
}
},
......@@ -221,18 +131,18 @@
}
],
"primitive": {
"digest": "fae487ee779444b98ab0f7f61d8e67b9eb0fd9e5876b27644c8b1fc08a3d04c3",
"id": "1dd82833-5692-39cb-84fb-2455683075f3",
"name": "sklearn.ensemble.forest.RandomForestClassifier",
"python_path": "d3m.primitives.classification.random_forest.SKlearn",
"version": "2019.6.7"
"digest": "1fce9009dd2bb5e9696366a51c3a4b867106223a553ab1a09c328b2f6284b0a5",
"id": "5bb6d960-8b6d-4d90-aa8d-88bb9994a20a",
"name": "lupi_rf.LupiRFClassifier",
"python_path": "d3m.primitives.classification.lupi_rf.LupiRFClassifier",
"version": "v6.0.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.6.produce",
"data": "steps.3.produce",
"type": "CONTAINER"
},
"reference": {
......@@ -246,7 +156,7 @@
}
],
"primitive": {
"digest": "e1f343aff9cb0a0dba9b69037aeefe71a5e8da2c9becd67f838130a394a7d4e6",
"digest": "588193dfc64501dc9fde6fc6332861a27f2ec3219130bdc50f3c9687af7a0bcb",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
......
......@@ -18,7 +18,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://gitlab.com/d3m-perspectalabs-primitives/lupi_rf.git@cf35919c8f8e342faf5a75c937ff18e54751c274#egg=lupi_rf"
"package_uri": "git+https://gitlab.com/d3m-perspectalabs-primitives/lupi_rf.git@80981b1fd32bc37e30634de15686fef6e429d8f2#egg=lupi_rf"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/primitive.json",
......@@ -703,5 +703,5 @@
},
"structural_type": "lupi_rf.lupi_rf.LupiRFClassifier",
"description": "This is an implementation of the LUPI with RandomForest primitive to solve classification problems. It can solve dataset problem with lupi features.\nThe values of the features in dataset need to be numerical, the label classes to be predicted should be categorical,\nand the missing values need to be imputed.\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.",
"digest": "d26017f4608b146d7d57a394cdce8278b842dc2ce5f81e18c5ce5adbe0dad342"
"digest": "1fce9009dd2bb5e9696366a51c3a4b867106223a553ab1a09c328b2f6284b0a5"
}
{
"created": "2020-01-16T05:18:40.936575Z",
"digest": "5759d96a223aaad3467535b8ca069eb6ef2fccc77e3b6b6c9edf03eb93667937",
"created": "2020-01-22T21:04:33.627059Z",
"digest": "ffc7e7c96641546975a297ee31a6314a993dd279d34d5aadd09bce77143c1b1c",
"id": "ta1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear",
"inputs": [
{
......@@ -28,7 +28,7 @@
}
],
"primitive": {
"digest": "721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1",
"digest": "00d77b6d0cea1a126f3d6a96c8b332a10d3d429a811956bfeea58c4f6d7bba73",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
......@@ -64,7 +64,7 @@
}
],
"primitive": {
"digest": "c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e",
"digest": "76c16806205234753dc66ea3ffa1f6d2ce6e4911794baeb3a8a375fcc2d6f378",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
......@@ -93,7 +93,7 @@
}
],
"primitive": {
"digest": "8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741",
"digest": "a0e9f18bfab3cfae1fb70a53567bf276660e959199c0c68d9ac310e81dab1e5e",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
......@@ -135,7 +135,7 @@
}
],
"primitive": {
"digest": "ca3eb77e67d060776ffcc8e791f116d897eddb0ed8b19e1c95f82c383c40c9a2",
"digest": "8062111bb2d31aaeaea961d4daff9d3f80cf4afa537860d08da1b4a5159062e2",
"id": "943a4b34-89c5-4296-bc1c-267f4887e2f9",
"name": "lupi_rfsel.LupiRFSelClassifier",
"python_path": "d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier",
......@@ -160,7 +160,7 @@
}
],
"primitive": {
"digest": "72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772",
"digest": "588193dfc64501dc9fde6fc6332861a27f2ec3219130bdc50f3c9687af7a0bcb",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
......
{
"created": "2020-01-16T05:29:38.164643Z",
"digest": "e90784378bdf0f374ececa5824e89f82edc4bc88c09999f11c61447ff8b2e59d",
"created": "2020-01-22T21:03:38.488582Z",
"digest": "69a9a8c24877b5d07ba182f413bfc59d3de539a2b116beeff0b652888d59735e",
"id": "ta1-perspecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear",
"inputs": [
{
......@@ -28,7 +28,7 @@
}
],
"primitive": {
"digest": "721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1",
"digest": "00d77b6d0cea1a126f3d6a96c8b332a10d3d429a811956bfeea58c4f6d7bba73",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
......@@ -64,7 +64,7 @@
}
],
"primitive": {
"digest": "c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e",
"digest": "76c16806205234753dc66ea3ffa1f6d2ce6e4911794baeb3a8a375fcc2d6f378",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
......@@ -93,7 +93,7 @@
}
],
"primitive": {
"digest": "8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741",
"digest": "a0e9f18bfab3cfae1fb70a53567bf276660e959199c0c68d9ac310e81dab1e5e",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
......@@ -135,7 +135,7 @@
}
],
"primitive": {
"digest": "ca3eb77e67d060776ffcc8e791f116d897eddb0ed8b19e1c95f82c383c40c9a2",
"digest": "8062111bb2d31aaeaea961d4daff9d3f80cf4afa537860d08da1b4a5159062e2",
"id": "943a4b34-89c5-4296-bc1c-267f4887e2f9",
"name": "lupi_rfsel.LupiRFSelClassifier",
"python_path": "d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier",
......@@ -160,7 +160,7 @@
}
],
"primitive": {
"digest": "72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772",
"digest": "588193dfc64501dc9fde6fc6332861a27f2ec3219130bdc50f3c9687af7a0bcb",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
......
{
"created": "2020-01-16T03:20:40.419345Z",
"digest": "19eb7dbed86c5ac6b73c0568c353c95d32265809ec6b5632199095359178792d",
"created": "2020-01-22T20:55:03.025237Z",
"digest": "ea012a8ed344b8c1d17da596c9c84b5b38dcc5ebce61d5c5fa9b97b2da2db265",
"id": "ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge",
"inputs": [