Commit ab133ddb authored by Jarod Wang's avatar Jarod Wang Committed by Mitar
Browse files

enable GLDA

* update pipeline and run files
parent eb3d03fc
{
"id": "47c183d8-2cd8-435f-a329-081d9b8f034e",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-01-16T20:21:10.287701Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.7.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"version": "0.2.0",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"name": "Determine missing semantic types for columns automatically",
"digest": "8b12a9aececdc5b7a4d5ef47cd04cda75592fd24f49922776b614d4bbeeb97f1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "f1215fe3351a2e8bf495f9ed5ed50e88b30d78d4d7ebd9e13bb544e63a10994b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.11.13",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "1fbe6321949de3f9bd1d93c6900cd5c3b3ee4b1a01506b89c69a776a9d27bf7a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "448590e7-8cf6-4bfd-abc4-db2980d8114e",
"version": "2.3.1",
"python_path": "d3m.primitives.classification.search_hybrid.Find_projections",
"name": "find projections",
"digest": "5d478ad9bcb004b4444a846773a135d62d2975ca4bf3ba704c024514e5867801"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"blackbox": {
"type": "VALUE",
"data": {
"class": "d3m.primitives.classification.random_forest.SKlearn"
}
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "2994d9885ddeb72f5a47a8fb04e27fe3f684adebf7c5dc27cb56392475dbb29c"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "34ae56db038a55f4f28091da350cc702a770f315e3c528c5719a1dca44f18492"
}
\ No newline at end of file
{
"id": "664f3afc-9634-42e6-a1b3-5380d4614b45",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-01-16T18:56:04.555213Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.8.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"version": "0.2.0",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"name": "Determine missing semantic types for columns automatically",
"digest": "8b12a9aececdc5b7a4d5ef47cd04cda75592fd24f49922776b614d4bbeeb97f1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "f1215fe3351a2e8bf495f9ed5ed50e88b30d78d4d7ebd9e13bb544e63a10994b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "c977e879-1bf5-3829-b5b0-39b00233aff5",
"version": "2019.11.13",
"python_path": "d3m.primitives.data_transformation.one_hot_encoder.SKlearn",
"name": "sklearn.preprocessing.data.OneHotEncoder",
"digest": "a715f1783a3bead01eb5cf95df71b31deb88790a2db4ce7e04df2a8b144b1d81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"return_result": {
"type": "VALUE",
"data": "replace"
},
"handle_unknown": {
"type": "VALUE",
"data": "ignore"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "854727ed-c82c-3137-ac59-fd52bc9ba385",
"version": "2019.11.13",
"python_path": "d3m.primitives.data_preprocessing.robust_scaler.SKlearn",
"name": "sklearn.preprocessing.data.RobustScaler",
"digest": "11ad3b6f497382297ae772a42a0345509133aa1b4f783b84299d990c5ca2ea08"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "448590e7-8cf6-4bfd-abc4-db2980d8114e",
"version": "2.3.1",
"python_path": "d3m.primitives.classification.search_hybrid.Find_projections",
"name": "find projections",
"digest": "5d478ad9bcb004b4444a846773a135d62d2975ca4bf3ba704c024514e5867801"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "2994d9885ddeb72f5a47a8fb04e27fe3f684adebf7c5dc27cb56392475dbb29c"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.7.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "e19118f53ce1a7d5f25bab4edc61330f29840cdc77f840ad74c1ff84b38915e4"
}
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment