Commit 78457548 authored by Brandon Schoenfeld's avatar Brandon Schoenfeld

updated primitive digests in pipelines

parent 287277da
{
"id": "74f5ccb1-053a-46cf-ad7f-005f67a15652",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-19T22:18:52.148196Z",
"created": "2019-04-22T17:58:32.966838Z",
"context": "TESTING",
"inputs": [
{
......@@ -22,7 +22,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b1c248751b314d78349de9c5590f3e970e1c5514b78a90707f4dc267c4ca7bf1"
"digest": "1e0fc07f5306223300e3966c50daf7a5f2095d201d316b31cdc86e48a5f98b4a"
},
"arguments": {
"inputs": {
......@@ -43,7 +43,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "fd9ba65a05a5fae4ab1536f385656099dbe3b42670e7353124379157bf14803b"
"digest": "3ef2a21d912b7f572df8ccd5edd75f640d09454bbfe2a39bab85c840f8b23f43"
},
"arguments": {
"inputs": {
......@@ -64,7 +64,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -93,7 +93,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -140,10 +140,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "f0fd7a62-09b5-3abc-93bb-f5f999f7cc80",
"version": "v2019.4.4",
"version": "2019.4.4",
"python_path": "d3m.primitives.regression.random_forest.SKlearn",
"name": "sklearn.ensemble.forest.RandomForestRegressor",
"digest": "d11179cee4ab21f3e6c0308775c5c5d22fc7a07dbceafeb9f86565c52d105765"
"digest": "796f24a7ad29a3a2dfb5e7b668860bd50b4486afce29e4f55e4e75df3c586e6a"
},
"arguments": {
"inputs": {
......@@ -174,7 +174,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "a16e280fce14ef80dba3035c1dbf0e2571fe7d02acd95b05f2787fd1886484e4"
"digest": "d62af6fae9ea50a5bf034d13ac67f117b62ff9c06152dcbbfdd5312136a4d80a"
},
"arguments": {
"inputs": {
......@@ -193,5 +193,5 @@
]
}
],
"digest": "7d70b2e66bf743485b2dfa06e7ca0928cd595714a3912642699b94e7678760c2"
"digest": "3202c0cff5df5c76b6ef97747ffa0ecebe1268a3355885257d6632a32ad4224e"
}
\ No newline at end of file
{
"id": "f4fe3fcc-45fe-4c85-8845-549e2f466f21",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-19T22:18:51.691000Z",
"created": "2019-04-22T17:58:32.528260Z",
"context": "TESTING",
"inputs": [
{
......@@ -22,7 +22,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b1c248751b314d78349de9c5590f3e970e1c5514b78a90707f4dc267c4ca7bf1"
"digest": "1e0fc07f5306223300e3966c50daf7a5f2095d201d316b31cdc86e48a5f98b4a"
},
"arguments": {
"inputs": {
......@@ -43,7 +43,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "fd9ba65a05a5fae4ab1536f385656099dbe3b42670e7353124379157bf14803b"
"digest": "3ef2a21d912b7f572df8ccd5edd75f640d09454bbfe2a39bab85c840f8b23f43"
},
"arguments": {
"inputs": {
......@@ -64,7 +64,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -93,7 +93,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -140,10 +140,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "1dd82833-5692-39cb-84fb-2455683075f3",
"version": "v2019.4.4",
"version": "2019.4.4",
"python_path": "d3m.primitives.classification.random_forest.SKlearn",
"name": "sklearn.ensemble.forest.RandomForestClassifier",
"digest": "7ea6cf52c696329ea9270dfc9d1cea219de388b5714ad850c6a055bd9b699ed9"
"digest": "0f35b19bc025b235419b728aa19758f2e599b8d8be1f26790448af40a3e0ab2a"
},
"arguments": {
"inputs": {
......@@ -174,7 +174,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "a16e280fce14ef80dba3035c1dbf0e2571fe7d02acd95b05f2787fd1886484e4"
"digest": "d62af6fae9ea50a5bf034d13ac67f117b62ff9c06152dcbbfdd5312136a4d80a"
},
"arguments": {
"inputs": {
......@@ -193,5 +193,5 @@
]
}
],
"digest": "371720cc680bbaf6753f813c7c6be96dfeeefa75a505754c7eb13e020140d3f7"
"digest": "6127132846cec4e224adb3f0a5c50895b51a16aa43f35c2a7151256a1f490070"
}
\ No newline at end of file
{
"id": "3013ad40-7c51-4991-b0fb-dbec65607979",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-19T22:18:52.253052Z",
"created": "2019-04-22T17:58:33.080094Z",
"context": "TESTING",
"inputs": [
{
......@@ -22,7 +22,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b1c248751b314d78349de9c5590f3e970e1c5514b78a90707f4dc267c4ca7bf1"
"digest": "1e0fc07f5306223300e3966c50daf7a5f2095d201d316b31cdc86e48a5f98b4a"
},
"arguments": {
"inputs": {
......@@ -43,7 +43,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "fd9ba65a05a5fae4ab1536f385656099dbe3b42670e7353124379157bf14803b"
"digest": "3ef2a21d912b7f572df8ccd5edd75f640d09454bbfe2a39bab85c840f8b23f43"
},
"arguments": {
"inputs": {
......@@ -85,7 +85,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -114,7 +114,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -140,10 +140,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4",
"version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d7d1c2bd5b669ac4a01334504f92f970fab4bb10e62755a2081f843ae8829796"
"digest": "a442529ad564892290c76819d033429e7b9d7c2912e80ef5a0b0526a2dfd4ebd"
},
"arguments": {
"inputs": {
......@@ -167,10 +167,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "f0fd7a62-09b5-3abc-93bb-f5f999f7cc80",
"version": "v2019.4.4",
"version": "2019.4.4",
"python_path": "d3m.primitives.regression.random_forest.SKlearn",
"name": "sklearn.ensemble.forest.RandomForestRegressor",
"digest": "d11179cee4ab21f3e6c0308775c5c5d22fc7a07dbceafeb9f86565c52d105765"
"digest": "796f24a7ad29a3a2dfb5e7b668860bd50b4486afce29e4f55e4e75df3c586e6a"
},
"arguments": {
"inputs": {
......@@ -201,7 +201,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "a16e280fce14ef80dba3035c1dbf0e2571fe7d02acd95b05f2787fd1886484e4"
"digest": "d62af6fae9ea50a5bf034d13ac67f117b62ff9c06152dcbbfdd5312136a4d80a"
},
"arguments": {
"inputs": {
......@@ -220,5 +220,5 @@
]
}
],
"digest": "1e2fea53947227561cf4c8c519ec4288801d63d9eb822df5d8b87b37c5cd8ec9"
"digest": "503ad371fa4b20f45fc947f9b089ed2542f02d5e2924d80b7ad3b42e55893199"
}
\ No newline at end of file
{
"id": "b32b9af1-34b4-437b-ad83-650f7df10acb",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-19T22:18:52.060557Z",
"created": "2019-04-22T17:58:32.888909Z",
"context": "TESTING",
"inputs": [
{
......@@ -22,7 +22,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b1c248751b314d78349de9c5590f3e970e1c5514b78a90707f4dc267c4ca7bf1"
"digest": "1e0fc07f5306223300e3966c50daf7a5f2095d201d316b31cdc86e48a5f98b4a"
},
"arguments": {
"inputs": {
......@@ -43,7 +43,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "fd9ba65a05a5fae4ab1536f385656099dbe3b42670e7353124379157bf14803b"
"digest": "3ef2a21d912b7f572df8ccd5edd75f640d09454bbfe2a39bab85c840f8b23f43"
},
"arguments": {
"inputs": {
......@@ -85,7 +85,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -114,7 +114,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "298167ba6e068fe75d94bfa8793827436e735f0d44551d738da045dc904edf0f"
"digest": "8d2b6d7e2ba7d08920a7f0d9e143bab6f6c8f4950979134e647d0f252c2f4836"
},
"arguments": {
"inputs": {
......@@ -140,10 +140,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4",
"version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d7d1c2bd5b669ac4a01334504f92f970fab4bb10e62755a2081f843ae8829796"
"digest": "a442529ad564892290c76819d033429e7b9d7c2912e80ef5a0b0526a2dfd4ebd"
},
"arguments": {
"inputs": {
......@@ -167,10 +167,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "1dd82833-5692-39cb-84fb-2455683075f3",
"version": "v2019.4.4",
"version": "2019.4.4",
"python_path": "d3m.primitives.classification.random_forest.SKlearn",
"name": "sklearn.ensemble.forest.RandomForestClassifier",
"digest": "7ea6cf52c696329ea9270dfc9d1cea219de388b5714ad850c6a055bd9b699ed9"
"digest": "0f35b19bc025b235419b728aa19758f2e599b8d8be1f26790448af40a3e0ab2a"
},
"arguments": {
"inputs": {
......@@ -201,7 +201,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "a16e280fce14ef80dba3035c1dbf0e2571fe7d02acd95b05f2787fd1886484e4"
"digest": "d62af6fae9ea50a5bf034d13ac67f117b62ff9c06152dcbbfdd5312136a4d80a"
},
"arguments": {
"inputs": {
......@@ -220,5 +220,5 @@
]
}
],
"digest": "c35f4822e43c80d1bea6f77d290263163c6633b3585b378fe37576eeb35d276b"
"digest": "b94ab3ed97d8e96e096071fa07fee163b2af2afaf757d5356d5326f172d0a482"
}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment