Commit 5e7d9580 authored by Sujen's avatar Sujen

Disable failing primitive

parent e7418cd0
{
"id": "4860461b-2fae-4044-9d0c-d5fc0293a6a4",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-14T18:25:39.628711Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"name": "Denormalize datasets",
"digest": "00ae7955cc0abce2a3ddee96247209f3395009ae6553c7ce8caa577e402754db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Boolean",
"http://schema.org/Integer",
"http://schema.org/Float",
"https://metadata.datadrivendiscovery.org/types/FloatVector"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Target",
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "7c305f3a-442a-41ad-b9db-8c437753b119",
"version": "0.1.0",
"python_path": "d3m.primitives.classification.bert_classifier.DistilBertPairClassification",
"name": "BERT pair classification",
"digest": "5d8ca1a46e54d449c602956379693ae42e5ac1e3d2b14cffd3793e4450c0f3f6"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"metric": {
"type": "VALUE",
"data": "f1"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "33af7c3880585f24a1b5b30dae3a5a23dd5f957590497503b22f6789be668137"
}
{
"problem": "32_wikiqa_problem",
"full_inputs": [
"32_wikiqa_dataset"
],
"train_inputs": [
"32_wikiqa_dataset_TRAIN"
],
"test_inputs": [
"32_wikiqa_dataset_TEST"
],
"score_inputs": [
"32_wikiqa_dataset_SCORE"
]
}
{
"id": "acdfa3d1-b64e-48ae-ac7e-237d1804a57a",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-13T23:48:25.102925Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"name": "Denormalize datasets",
"digest": "00ae7955cc0abce2a3ddee96247209f3395009ae6553c7ce8caa577e402754db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Boolean",
"http://schema.org/Integer",
"http://schema.org/Float",
"https://metadata.datadrivendiscovery.org/types/FloatVector"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Target",
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "7c305f3a-442a-41ad-b9db-8c437753b119",
"version": "0.1.0",
"python_path": "d3m.primitives.classification.bert_classifier.DistilBertPairClassification",
"name": "BERT pair classification",
"digest": "5d8ca1a46e54d449c602956379693ae42e5ac1e3d2b14cffd3793e4450c0f3f6"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"metric": {
"type": "VALUE",
"data": "f1"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "2fecc2ebca2e52676fa971b2b3ed5dad99c841df8f2cc7ff6a96003fcae4ffb2"
}
{
"problem": "32_wikiqa_problem",
"full_inputs": [
"32_wikiqa_dataset"
],
"train_inputs": [
"32_wikiqa_dataset_TRAIN"
],
"test_inputs": [
"32_wikiqa_dataset_TEST"
],
"score_inputs": [
"32_wikiqa_dataset_SCORE"
]
}
......@@ -14,7 +14,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/uncharted-distil/[email protected]ed1437daf5a7788544a4dfc5218f41a789420790#egg=distil-primitives"
"package_uri": "git+https://github.com/uncharted-distil/[email protected]39cd3be425445767122f12c74d0dd6e790f4ef86#egg=distil-primitives"
},
{
"type": "FILE",
......@@ -236,5 +236,5 @@
},
"structural_type": "distil.primitives.bert_classification.BertPairClassificationPrimitive",
"description": "Uses a pre-trained pytorch BERT model to predict a label of 0 or 1 for a pair of documents, given training samples\nof document pairs labelled 0/1. Takes a datrame of documents and a dataframe of labels as inputs, and returns\na dataframe containing the predictions as a result.\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.",
"digest": "5d8ca1a46e54d449c602956379693ae42e5ac1e3d2b14cffd3793e4450c0f3f6"
"digest": "b13b4548c9330b98c597522332aa6672f70e1f20b3d90c328e7ba6ad7b25539d"
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment