Commit 561b0810 authored by Jarod Wang's avatar Jarod Wang Committed by Mitar
Browse files

add a new primitive for time series forecasting

parent d61f138e
{
"id": "8890850f-eb6c-4c04-96d6-9ee57529ff7c",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-01-31T23:09:25.913675Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.8.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"version": "0.2.0",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"name": "Determine missing semantic types for columns automatically",
"digest": "8b12a9aececdc5b7a4d5ef47cd04cda75592fd24f49922776b614d4bbeeb97f1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "f1215fe3351a2e8bf495f9ed5ed50e88b30d78d4d7ebd9e13bb544e63a10994b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Boolean",
"http://schema.org/Integer",
"http://schema.org/Float",
"https://metadata.datadrivendiscovery.org/types/FloatVector",
"http://schema.org/DateTime"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.11.13",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "1fbe6321949de3f9bd1d93c6900cd5c3b3ee4b1a01506b89c69a776a9d27bf7a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "59db88b9-dd81-4e50-8f43-8f2af959560b",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.grouping_field_compose.Common",
"name": "Grouping Field Compose",
"digest": "4666539fb0f96ee3a40e0fc8d705b9ff309b137261fc3b76fa1194beb78e30e4"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Target",
"https://metadata.datadrivendiscovery.org/types/TrueTarget",
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "098afc89-da5f-4bf4-9298-dcd39406354c",
"version": "0.1.0",
"python_path": "d3m.primitives.time_series_forecasting.esrnn.RNN",
"name": "Hybrid ES-RNN models for time series forecasting",
"digest": "4ca505128b4cf413f94430018b038e7631e39b5d9b893d6d08c98ee47b315a24"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "2994d9885ddeb72f5a47a8fb04e27fe3f684adebf7c5dc27cb56392475dbb29c"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.7.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "70e1bc205868125d2b9c903f79d5fae363434798ae83a35be5f4a694a1cf784b"
}
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment