Commit 4ffac5b9 authored by Jarod Wang's avatar Jarod Wang Committed by Mitar

cmu 20191118 1407

parent 61504d6a
{
"id": "9a7a9525-01e0-4890-af23-959236cf96ee",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-11-18T18:57:33.061359Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "639d15e7fc2586589050d7908c0e1a654f065ab5315edb9cf4192b4dd89c7004"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "6a6c7777bb8a19b0021f77b271ac03e1d068b9a5deb27c9346e60510ce5e0938"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "9aca478606e903ee5ef707aa641be2ea3d3e7e11a19745d95e706a0c9ab3079e"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
1,
2,
3,
4,
5,
20,
21,
22,
23,
27
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f410b951-1cb6-481c-8d95-2d97b31d411d",
"version": "3.1.1",
"python_path": "d3m.primitives.natural_language_processing.lda.Fastlvm",
"name": "Latent Dirichlet Allocation Topic Modelling",
"digest": "520a087b65cbf7c1140a8eaecbad606971e32faedd51a6146f75657344937c32"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 100
},
"iters": {
"type": "VALUE",
"data": 100
},
"frac": {
"type": "VALUE",
"data": 0.001
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "9aca478606e903ee5ef707aa641be2ea3d3e7e11a19745d95e706a0c9ab3079e"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e770fae6-da6d-45f8-86bf-38a121a4e65a",
"version": "3.1.1",
"python_path": "d3m.primitives.classification.cover_tree.Fastlvm",
"name": "Nearest Neighbor Classification with Cover Trees",
"digest": "60d620893ebbd3db95cfbc59b97f7d9febe8a0603a25e2724fd4645064c939a0"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 50
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "2769ce7b829f224dc7468b48da4462517b2a6260a9772827017dd9da2690b42a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "f73c1759a2be05b7f68e642bc00547e6cccb9967a58d1ec964e40da150703b70"
}
\ No newline at end of file
{
"id": "c3d8a5be-bf82-4864-9423-a536f9764c43",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-11-18T18:58:22.795083Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.7.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "639d15e7fc2586589050d7908c0e1a654f065ab5315edb9cf4192b4dd89c7004"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "6a6c7777bb8a19b0021f77b271ac03e1d068b9a5deb27c9346e60510ce5e0938"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "9aca478606e903ee5ef707aa641be2ea3d3e7e11a19745d95e706a0c9ab3079e"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "9aca478606e903ee5ef707aa641be2ea3d3e7e11a19745d95e706a0c9ab3079e"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "c977e879-1bf5-3829-b5b0-39b00233aff5",
"version": "2019.6.7",
"python_path": "d3m.primitives.data_transformation.one_hot_encoder.SKlearn",
"name": "sklearn.preprocessing.data.OneHotEncoder",
"digest": "52e971e981eb37694ca8a0c49cefea78b5d0443cefdb9bdb7fd838ebb6dcb691"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
},
"handle_unknown": {
"type": "VALUE",
"data": "ignore"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "854727ed-c82c-3137-ac59-fd52bc9ba385",
"version": "2019.6.7",
"python_path": "d3m.primitives.data_preprocessing.robust_scaler.SKlearn",
"name": "sklearn.preprocessing.data.RobustScaler",
"digest": "eb5dbe1ea5f37a394864ca802b93228333d60a1cd8f66901ccde8e1b71f98586"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e770fae6-da6d-45f8-86bf-38a121a4e65a",
"version": "3.1.1",
"python_path": "d3m.primitives.classification.cover_tree.Fastlvm",
"name": "Nearest Neighbor Classification with Cover Trees",
"digest": "60d620893ebbd3db95cfbc59b97f7d9febe8a0603a25e2724fd4645064c939a0"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 1
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "2769ce7b829f224dc7468b48da4462517b2a6260a9772827017dd9da2690b42a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "85dc4807f3374c5686d1e41ea279afafbeaed4acd7d09ca510f4e1bc2f9ec36b"
}
\ No newline at end of file
{
"id": "f0d94e6a-c43b-4d9b-bed0-e92c2db17754",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-11-18T18:14:29.320524Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "639d15e7fc2586589050d7908c0e1a654f065ab5315edb9cf4192b4dd89c7004"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "6a6c7777bb8a19b0021f77b271ac03e1d068b9a5deb27c9346e60510ce5e0938"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "9aca478606e903ee5ef707aa641be2ea3d3e7e11a19745d95e706a0c9ab3079e"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.6.7",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "adc79e644eec35eb9d616be755a5de83b27f66e42b04f6508a9ceb82d99cc739"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"