Commit 4d3ce13b authored by Mark Hoffmann's avatar Mark Hoffmann

updated annotations

parent 379bb5c1
{
"created": "2019-06-20T17:55:12.754963Z",
"digest": "a995722b920a7a66075231e6e52178b36fd1fa7acdb7e031f4a9fd6e16029736",
"id": "d9cd0304-ba37-4505-8dc6-ced2f652f17d",
"inputs": [
{
"name": "inputs"
"created": "2019-06-20T17:55:12.754963Z",
"digest": "a995722b920a7a66075231e6e52178b36fd1fa7acdb7e031f4a9fd6e16029736",
"id": "774c143f-0151-429d-9f8c-35143c2e2a33",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.4.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
],
"outputs": [
},
"outputs": [
{
"data": "steps.4.produce",
"name": "output predictions"
"id": "produce"
}
],
"primitive": {
"digest": "3cddf0ce62f0f2d3a5160472a5f6ddc672d5b278ecb13860d1034cafbb701c4f",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
},
"outputs": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "3cddf0ce62f0f2d3a5160472a5f6ddc672d5b278ecb13860d1034cafbb701c4f",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
"id": "produce"
}
],
"primitive": {
"digest": "43e25a79673fe3b91077f3786bb1b0f6342b5e05f4a69441c10b78cc26388f11",
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"name": "Parses strings into their types",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"version": "0.5.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"return_result": {
"data": "replace",
"type": "VALUE"
},
"use_semantic_types": {
"data": true,
"type": "VALUE"
}
},
"outputs": [
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "43e25a79673fe3b91077f3786bb1b0f6342b5e05f4a69441c10b78cc26388f11",
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"name": "Parses strings into their types",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"version": "0.5.0"
},
"type": "PRIMITIVE"
"id": "produce"
}
],
"primitive": {
"digest": "f5a079b6cca11de74f805ed67ef97d0f91642eaca1c833dc1501f762d734159c",
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"name": "sklearn.impute.SimpleImputer",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"version": "2019.6.7"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"add_index_columns": {
"data": true,
"type": "VALUE"
},
"use_semantic_types": {
"data": true,
"type": "VALUE"
}
},
"outputs": [
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"return_result": {
"data": "replace",
"type": "VALUE"
},
"use_semantic_types": {
"data": true,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "f5a079b6cca11de74f805ed67ef97d0f91642eaca1c833dc1501f762d734159c",
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"name": "sklearn.impute.SimpleImputer",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"version": "2019.6.7"
},
"type": "PRIMITIVE"
"id": "produce"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"add_index_columns": {
"data": true,
"type": "VALUE"
},
"use_semantic_types": {
"data": true,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
},
{
"id": "produce_optimal_hyperparameters"
}
],
"primitive": {
"id": "35321059-2a1a-31fd-9509-5494efc751c7",
"name": "smac",
"python_path": "d3m.primitives.schema_discovery.smac.JPLPrimitives",
"version": "2019.6.7"
},
"type": "PRIMITIVE"
"id": "produce_optimal_hyperparameters"
}
],
"primitive": {
"id": "35321059-2a1a-31fd-9509-5494efc751c7",
"name": "smac",
"python_path": "d3m.primitives.schema_discovery.smac.JPLPrimitives",
"version": "2019.6.7"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"arguments": {
"inputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "5244439dcb1797396e5f28d350c32774e919fdf0b6657af12b7ec47540ba5220",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"version": "0.3.0"
},
"type": "PRIMITIVE"
"id": "produce"
}
]
}
\ No newline at end of file
],
"primitive": {
"digest": "5244439dcb1797396e5f28d350c32774e919fdf0b6657af12b7ec47540ba5220",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
......@@ -22,7 +22,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://gitlab.com/datadrivendiscovery/[email protected]1e4c7536f4241ded731113c1a6da26b48a16a2fc#egg=jpl_primitives"
"package_uri": "git+https://gitlab.com/datadrivendiscovery/[email protected]84ce0b821d4a7e421fa9946fd2a68f78fc86518f#egg=jpl_primitives"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/primitive.json",
......@@ -406,5 +406,5 @@
},
"structural_type": "jpl_primitives.optimizers.smac_optimizer.SMACOptimizerPrimitive",
"description": "A Primitive that takes in the dataset and uses SMAC optimization in order to optimize the hyperparameters.\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.",
"digest": "dd63c15e51de470ee981559c10e089f603be5236a6003b073038aefb243000ab"
"digest": "71d3b44be143d196ece67115404a907080e9d8f2790859d6e98533b9da42b9c3"
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment