Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Switch to GitLab Next
Sign in / Register
Toggle navigation
Open sidebar
datadrivendiscovery
primitives
Commits
4ca70e8f
Commit
4ca70e8f
authored
Jan 16, 2020
by
Mitar
Browse files
Merge branch 'v8.0.1' into 'master'
update pipelines See merge request
!105
parents
ea23e3f0
1f4ba8fd
Pipeline
#109936184
failed with stages
in 32 minutes and 24 seconds
Changes
24
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
24 changed files
with
2536 additions
and
4 deletions
+2536
-4
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear_run.yaml.gz
...pecta-rfsel_27_wordLevels_MIN_METADATA_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear_run.yaml.gz
...fsel_LL0_1100_popularkids_MIN_METADATA_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge_run.yaml.gz
...L0_186_braziltourism_MIN_METADATA_kernelridge_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_linear_run.yaml.gz
...sel_LL0_186_braziltourism_MIN_METADATA_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_acled_reduced_MIN_METADATA_linear_run.yaml.gz
...a-rfsel_LL0_acled_reduced_MIN_METADATA_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_uu6_hepatitis_MIN_METADATA_kernelridge_run.yaml.gz
...-rfsel_uu6_hepatitis_MIN_METADATA_kernelridge_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear.json
...a1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear.json
+172
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear.json
...pecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear.json
+172
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge.json
...rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge.json
+207
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_linear.json
...ecta-rfsel_LL0_186_braziltourism_MIN_METADATA_linear.json
+207
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_LL0_acled_reduced_MIN_METADATA_linear.json
...erspecta-rfsel_LL0_acled_reduced_MIN_METADATA_linear.json
+172
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_uu6_hepatitis_MIN_METADATA_kernelridge.json
...rspecta-rfsel_uu6_hepatitis_MIN_METADATA_kernelridge.json
+207
-0
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/primitive.json
...tion.lupi_rfsel.LupiRFSelClassifier/v6.0.0/primitive.json
+2
-2
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipeline_runs/ta1-perspecta-lupimfa_1491_one_hundred_plants_margin_MIN_METADATA_s0_linear_run.yaml.gz
..._hundred_plants_margin_MIN_METADATA_s0_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipeline_runs/ta1-perspecta-lupimfa_1491_one_hundred_plants_margin_MIN_METADATA_s1_linear_run.yaml.gz
..._hundred_plants_margin_MIN_METADATA_s1_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipeline_runs/ta1-perspecta-lupimfa_LL0_186_braziltourism_MIN_METADATA_s0_linear_run.yaml.gz
..._LL0_186_braziltourism_MIN_METADATA_s0_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipeline_runs/ta1-perspecta-lupimfa_uu5_heartstatlog_MIN_METADATA_s0_linear_run.yaml.gz
...pimfa_uu5_heartstatlog_MIN_METADATA_s0_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipeline_runs/ta1-perspecta-lupimfa_uu6_hepatitis_MIN_METADATA_s0_linear_run.yaml.gz
...-lupimfa_uu6_hepatitis_MIN_METADATA_s0_linear_run.yaml.gz
+0
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipelines/ta1-perspecta-lupimfa_1491_one_hundred_plants_margin_MIN_METADATA_s0_linear.json
...491_one_hundred_plants_margin_MIN_METADATA_s0_linear.json
+279
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipelines/ta1-perspecta-lupimfa_1491_one_hundred_plants_margin_MIN_METADATA_s1_linear.json
...491_one_hundred_plants_margin_MIN_METADATA_s1_linear.json
+279
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipelines/ta1-perspecta-lupimfa_LL0_186_braziltourism_MIN_METADATA_s0_linear.json
...lupimfa_LL0_186_braziltourism_MIN_METADATA_s0_linear.json
+279
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipelines/ta1-perspecta-lupimfa_uu5_heartstatlog_MIN_METADATA_s0_linear.json
...ecta-lupimfa_uu5_heartstatlog_MIN_METADATA_s0_linear.json
+279
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/pipelines/ta1-perspecta-lupimfa_uu6_hepatitis_MIN_METADATA_s0_linear.json
...rspecta-lupimfa_uu6_hepatitis_MIN_METADATA_s0_linear.json
+279
-0
v2020.1.9/VencoreLabs/d3m.primitives.data_preprocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/primitive.json
...rocessing.lupi_mfa.lupi_mfa.LupiMFA/v6.0.0/primitive.json
+2
-2
No files found.
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear_run.yaml.gz
0 → 100644
View file @
4ca70e8f
File added
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear_run.yaml.gz
0 → 100644
View file @
4ca70e8f
File added
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge_run.yaml.gz
0 → 100644
View file @
4ca70e8f
File added
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_linear_run.yaml.gz
0 → 100644
View file @
4ca70e8f
File added
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_LL0_acled_reduced_MIN_METADATA_linear_run.yaml.gz
0 → 100644
View file @
4ca70e8f
File added
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipeline_runs/ta1-perspecta-rfsel_uu6_hepatitis_MIN_METADATA_kernelridge_run.yaml.gz
0 → 100644
View file @
4ca70e8f
File added
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear.json
0 → 100644
View file @
4ca70e8f
{
"created"
:
"2020-01-16T05:18:40.936575Z"
,
"digest"
:
"5759d96a223aaad3467535b8ca069eb6ef2fccc77e3b6b6c9edf03eb93667937"
,
"id"
:
"ta1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear"
,
"inputs"
:
[
{
"name"
:
"inputs"
}
],
"outputs"
:
[
{
"data"
:
"steps.4.produce"
,
"name"
:
"output predictions"
}
],
"schema"
:
"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json"
,
"steps"
:
[
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"inputs.0"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1"
,
"id"
:
"4b42ce1e-9b98-4a25-b68e-fad13311eb65"
,
"name"
:
"Extract a DataFrame from a Dataset"
,
"python_path"
:
"d3m.primitives.data_transformation.dataset_to_dataframe.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.0.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"detect_semantic_types"
:
{
"data"
:
[
"http://schema.org/Boolean"
,
"https://metadata.datadrivendiscovery.org/types/CategoricalData"
,
"http://schema.org/Integer"
,
"http://schema.org/Float"
,
"http://schema.org/Text"
,
"https://metadata.datadrivendiscovery.org/types/Attribute"
,
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
,
"https://metadata.datadrivendiscovery.org/types/PrimaryKey"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e"
,
"id"
:
"e193afa1-b45e-4d29-918f-5bb1fa3b88a7"
,
"name"
:
"Determine missing semantic types for columns automatically"
,
"python_path"
:
"d3m.primitives.schema_discovery.profiler.Common"
,
"version"
:
"0.2.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"semantic_types"
:
{
"data"
:
[
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741"
,
"id"
:
"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1"
,
"name"
:
"Extracts columns by semantic type"
,
"python_path"
:
"d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
},
"outputs"
:
{
"data"
:
"steps.2.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"max_depth"
:
{
"data"
:
{
"case"
:
"int"
,
"value"
:
10
},
"type"
:
"VALUE"
},
"n_estimators"
:
{
"data"
:
300
,
"type"
:
"VALUE"
},
"regressor_type"
:
{
"data"
:
"linear"
,
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"ca3eb77e67d060776ffcc8e791f116d897eddb0ed8b19e1c95f82c383c40c9a2"
,
"id"
:
"943a4b34-89c5-4296-bc1c-267f4887e2f9"
,
"name"
:
"lupi_rfsel.LupiRFSelClassifier"
,
"python_path"
:
"d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier"
,
"version"
:
"v6.0.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.3.produce"
,
"type"
:
"CONTAINER"
},
"reference"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772"
,
"id"
:
"8d38b340-f83f-4877-baaa-162f8e551736"
,
"name"
:
"Construct pipeline predictions output"
,
"python_path"
:
"d3m.primitives.data_transformation.construct_predictions.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
}
]
}
\ No newline at end of file
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear.json
0 → 100644
View file @
4ca70e8f
{
"created"
:
"2020-01-16T05:29:38.164643Z"
,
"digest"
:
"e90784378bdf0f374ececa5824e89f82edc4bc88c09999f11c61447ff8b2e59d"
,
"id"
:
"ta1-perspecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear"
,
"inputs"
:
[
{
"name"
:
"inputs"
}
],
"outputs"
:
[
{
"data"
:
"steps.4.produce"
,
"name"
:
"output predictions"
}
],
"schema"
:
"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json"
,
"steps"
:
[
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"inputs.0"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1"
,
"id"
:
"4b42ce1e-9b98-4a25-b68e-fad13311eb65"
,
"name"
:
"Extract a DataFrame from a Dataset"
,
"python_path"
:
"d3m.primitives.data_transformation.dataset_to_dataframe.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.0.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"detect_semantic_types"
:
{
"data"
:
[
"http://schema.org/Boolean"
,
"https://metadata.datadrivendiscovery.org/types/CategoricalData"
,
"http://schema.org/Integer"
,
"http://schema.org/Float"
,
"http://schema.org/Text"
,
"https://metadata.datadrivendiscovery.org/types/Attribute"
,
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
,
"https://metadata.datadrivendiscovery.org/types/PrimaryKey"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e"
,
"id"
:
"e193afa1-b45e-4d29-918f-5bb1fa3b88a7"
,
"name"
:
"Determine missing semantic types for columns automatically"
,
"python_path"
:
"d3m.primitives.schema_discovery.profiler.Common"
,
"version"
:
"0.2.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"semantic_types"
:
{
"data"
:
[
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741"
,
"id"
:
"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1"
,
"name"
:
"Extracts columns by semantic type"
,
"python_path"
:
"d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
},
"outputs"
:
{
"data"
:
"steps.2.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"max_depth"
:
{
"data"
:
{
"case"
:
"int"
,
"value"
:
10
},
"type"
:
"VALUE"
},
"n_estimators"
:
{
"data"
:
300
,
"type"
:
"VALUE"
},
"regressor_type"
:
{
"data"
:
"linear"
,
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"ca3eb77e67d060776ffcc8e791f116d897eddb0ed8b19e1c95f82c383c40c9a2"
,
"id"
:
"943a4b34-89c5-4296-bc1c-267f4887e2f9"
,
"name"
:
"lupi_rfsel.LupiRFSelClassifier"
,
"python_path"
:
"d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier"
,
"version"
:
"v6.0.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.3.produce"
,
"type"
:
"CONTAINER"
},
"reference"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772"
,
"id"
:
"8d38b340-f83f-4877-baaa-162f8e551736"
,
"name"
:
"Construct pipeline predictions output"
,
"python_path"
:
"d3m.primitives.data_transformation.construct_predictions.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
}
]
}
\ No newline at end of file
v2020.1.9/VencoreLabs/d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier/v6.0.0/pipelines/ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge.json
0 → 100644
View file @
4ca70e8f
{
"created"
:
"2020-01-16T03:20:40.419345Z"
,
"digest"
:
"19eb7dbed86c5ac6b73c0568c353c95d32265809ec6b5632199095359178792d"
,
"id"
:
"ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge"
,
"inputs"
:
[
{
"name"
:
"inputs"
}
],
"outputs"
:
[
{
"data"
:
"steps.5.produce"
,
"name"
:
"output predictions"
}
],
"schema"
:
"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json"
,
"steps"
:
[
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"inputs.0"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1"
,
"id"
:
"4b42ce1e-9b98-4a25-b68e-fad13311eb65"
,
"name"
:
"Extract a DataFrame from a Dataset"
,
"python_path"
:
"d3m.primitives.data_transformation.dataset_to_dataframe.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.0.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"detect_semantic_types"
:
{
"data"
:
[
"http://schema.org/Boolean"
,
"https://metadata.datadrivendiscovery.org/types/CategoricalData"
,
"http://schema.org/Integer"
,
"http://schema.org/Float"
,
"http://schema.org/Text"
,
"https://metadata.datadrivendiscovery.org/types/Attribute"
,
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
,
"https://metadata.datadrivendiscovery.org/types/PrimaryKey"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e"
,
"id"
:
"e193afa1-b45e-4d29-918f-5bb1fa3b88a7"
,
"name"
:
"Determine missing semantic types for columns automatically"
,
"python_path"
:
"d3m.primitives.schema_discovery.profiler.Common"
,
"version"
:
"0.2.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"columns"
:
{
"data"
:
[
6
],
"type"
:
"VALUE"
},
"semantic_types"
:
{
"data"
:
[
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"83317996ffd318a7841d245e9ae1cc839020734aaf557c8f4597ab43dc9aaead"
,
"id"
:
"3002bc5b-fa47-4a3d-882e-a8b5f3d756aa"
,
"name"
:
"Remove semantic types from columns"
,
"python_path"
:
"d3m.primitives.data_transformation.remove_semantic_types.Common"
,
"version"
:
"0.1.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.2.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"semantic_types"
:
{
"data"
:
[
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741"
,
"id"
:
"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1"
,
"name"
:
"Extracts columns by semantic type"
,
"python_path"
:
"d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.2.produce"
,
"type"
:
"CONTAINER"
},
"outputs"
:
{