Commit 4ca70e8f authored by Mitar's avatar Mitar
Browse files

Merge branch 'v8.0.1' into 'master'

update pipelines

See merge request !105
parents ea23e3f0 1f4ba8fd
Pipeline #109936184 failed with stages
in 32 minutes and 24 seconds
{
"created": "2020-01-16T05:18:40.936575Z",
"digest": "5759d96a223aaad3467535b8ca069eb6ef2fccc77e3b6b6c9edf03eb93667937",
"id": "ta1-perspecta-rfsel_27_wordLevels_MIN_METADATA_linear",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.4.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"detect_semantic_types": {
"data": [
"http://schema.org/Boolean",
"https://metadata.datadrivendiscovery.org/types/CategoricalData",
"http://schema.org/Integer",
"http://schema.org/Float",
"http://schema.org/Text",
"https://metadata.datadrivendiscovery.org/types/Attribute",
"https://metadata.datadrivendiscovery.org/types/TrueTarget",
"https://metadata.datadrivendiscovery.org/types/PrimaryKey"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"max_depth": {
"data": {
"case": "int",
"value": 10
},
"type": "VALUE"
},
"n_estimators": {
"data": 300,
"type": "VALUE"
},
"regressor_type": {
"data": "linear",
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "ca3eb77e67d060776ffcc8e791f116d897eddb0ed8b19e1c95f82c383c40c9a2",
"id": "943a4b34-89c5-4296-bc1c-267f4887e2f9",
"name": "lupi_rfsel.LupiRFSelClassifier",
"python_path": "d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier",
"version": "v6.0.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
\ No newline at end of file
{
"created": "2020-01-16T05:29:38.164643Z",
"digest": "e90784378bdf0f374ececa5824e89f82edc4bc88c09999f11c61447ff8b2e59d",
"id": "ta1-perspecta-rfsel_LL0_1100_popularkids_MIN_METADATA_linear",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.4.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"detect_semantic_types": {
"data": [
"http://schema.org/Boolean",
"https://metadata.datadrivendiscovery.org/types/CategoricalData",
"http://schema.org/Integer",
"http://schema.org/Float",
"http://schema.org/Text",
"https://metadata.datadrivendiscovery.org/types/Attribute",
"https://metadata.datadrivendiscovery.org/types/TrueTarget",
"https://metadata.datadrivendiscovery.org/types/PrimaryKey"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"max_depth": {
"data": {
"case": "int",
"value": 10
},
"type": "VALUE"
},
"n_estimators": {
"data": 300,
"type": "VALUE"
},
"regressor_type": {
"data": "linear",
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "ca3eb77e67d060776ffcc8e791f116d897eddb0ed8b19e1c95f82c383c40c9a2",
"id": "943a4b34-89c5-4296-bc1c-267f4887e2f9",
"name": "lupi_rfsel.LupiRFSelClassifier",
"python_path": "d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier",
"version": "v6.0.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "72b09a3850221af181095b84d76904107a59fa40ed6631c5e42b45a6f2151772",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
\ No newline at end of file
{
"created": "2020-01-16T03:20:40.419345Z",
"digest": "19eb7dbed86c5ac6b73c0568c353c95d32265809ec6b5632199095359178792d",
"id": "ta1-perspecta-rfsel_LL0_186_braziltourism_MIN_METADATA_kernelridge",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.5.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "721acdfdf36de9b51a2100a2f4056904d2641c49e5812515fe565adecdf076d1",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"detect_semantic_types": {
"data": [
"http://schema.org/Boolean",
"https://metadata.datadrivendiscovery.org/types/CategoricalData",
"http://schema.org/Integer",
"http://schema.org/Float",
"http://schema.org/Text",
"https://metadata.datadrivendiscovery.org/types/Attribute",
"https://metadata.datadrivendiscovery.org/types/TrueTarget",
"https://metadata.datadrivendiscovery.org/types/PrimaryKey"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "c5dd2bbc5f362690233c9b74f1ce78fa2d0b6a4b226001894cc923424403463e",
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"name": "Determine missing semantic types for columns automatically",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"columns": {
"data": [
6
],
"type": "VALUE"
},
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "83317996ffd318a7841d245e9ae1cc839020734aaf557c8f4597ab43dc9aaead",
"id": "3002bc5b-fa47-4a3d-882e-a8b5f3d756aa",
"name": "Remove semantic types from columns",
"python_path": "d3m.primitives.data_transformation.remove_semantic_types.Common",
"version": "0.1.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "8ec39fb39a8a0caca637ef87c1a641b43b1fde77c81a1627456b75f388fa1741",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
},
"outputs": {