Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
9
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Switch to GitLab Next
Sign in / Register
Toggle navigation
Open sidebar
datadrivendiscovery
primitives
Commits
2c8a34a6
Commit
2c8a34a6
authored
Jan 12, 2020
by
Mitar
Browse files
Merge branch 'master' into 'master'
Master See merge request
!81
parents
92080d50
249820b6
Pipeline
#108721422
passed with stages
in 56 minutes and 33 seconds
Changes
17
Pipelines
1
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
2874 additions
and
0 deletions
+2874
-0
.gitattributes
.gitattributes
+4
-0
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipeline_runs/0330e86a-4ab9-4338-ae98-57e9fca417b3_run.yaml.gz
...ine_runs/0330e86a-4ab9-4338-ae98-57e9fca417b3_run.yaml.gz
+0
-0
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipeline_runs/3abccaaa-f954-486a-836f-f00acdd26665_run.yaml.gz
...ine_runs/3abccaaa-f954-486a-836f-f00acdd26665_run.yaml.gz
+0
-0
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipeline_runs/969f1796-418d-406f-b4e0-6c1cc5a74d43_run.yaml.gz
...ine_runs/969f1796-418d-406f-b4e0-6c1cc5a74d43_run.yaml.gz
+0
-0
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipelines/0330e86a-4ab9-4338-ae98-57e9fca417b3.json
...0.1.1/pipelines/0330e86a-4ab9-4338-ae98-57e9fca417b3.json
+371
-0
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipelines/3abccaaa-f954-486a-836f-f00acdd26665.json
...0.1.1/pipelines/3abccaaa-f954-486a-836f-f00acdd26665.json
+384
-0
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipelines/969f1796-418d-406f-b4e0-6c1cc5a74d43.json
...0.1.1/pipelines/969f1796-418d-406f-b4e0-6c1cc5a74d43.json
+300
-0
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/primitive.json
...filtering.high_rank_imputer.Cornell/v0.1.1/primitive.json
+224
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/6d7cea34-faab-46c1-ba81-ca874433cb65_run.yaml.gz
...ine_runs/6d7cea34-faab-46c1-ba81-ca874433cb65_run.yaml.gz
+0
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/852b39c6-b9f9-417c-a476-9de3d0215c3e_run.yaml.gz
...ine_runs/852b39c6-b9f9-417c-a476-9de3d0215c3e_run.yaml.gz
+0
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/bae167b8-1379-45cc-97da-218b79d83d1d_run.yaml.gz
...ine_runs/bae167b8-1379-45cc-97da-218b79d83d1d_run.yaml.gz
+0
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/c206c51f-be64-47f8-b969-c1512ed0111c_run.yaml.gz
...ine_runs/c206c51f-be64-47f8-b969-c1512ed0111c_run.yaml.gz
+0
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipelines/6d7cea34-faab-46c1-ba81-ca874433cb65.json
...0.1.1/pipelines/6d7cea34-faab-46c1-ba81-ca874433cb65.json
+399
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipelines/852b39c6-b9f9-417c-a476-9de3d0215c3e.json
...0.1.1/pipelines/852b39c6-b9f9-417c-a476-9de3d0215c3e.json
+304
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipelines/bae167b8-1379-45cc-97da-218b79d83d1d.json
...0.1.1/pipelines/bae167b8-1379-45cc-97da-218b79d83d1d.json
+319
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipelines/c206c51f-be64-47f8-b969-c1512ed0111c.json
...0.1.1/pipelines/c206c51f-be64-47f8-b969-c1512ed0111c.json
+355
-0
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/primitive.json
...processing.low_rank_imputer.Cornell/v0.1.1/primitive.json
+214
-0
No files found.
.gitattributes
View file @
2c8a34a6
...
...
@@ -35,3 +35,7 @@ failed/v2019.11.10/CMU/d3m.primitives.semisupervised_classification.iterative_la
v2019.11.10/CMU/d3m.primitives.semisupervised_classification.iterative_labeling.AutonBox/0.2.1/pipeline_runs/pipeline_run_SEMI_1217_click_prediction_small.yaml.gz filter=lfs diff=lfs merge=lfs -text
v2019.11.10/CMU/d3m.primitives.semisupervised_classification.iterative_labeling.AutonBox/0.2.1/pipeline_runs/pipeline_run_SEMI_155_pokerhand.yaml.gz filter=lfs diff=lfs merge=lfs -text
failed/v2019.11.10/MIT_FeatureLabs/d3m.primitives.feature_construction.deep_feature_synthesis.SingleTableFeaturization/0.7.1/pipeline_runs/kaggle_music_hackathon_singletable_pipeline_run.yml.gz filter=lfs diff=lfs merge=lfs -text
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/852b39c6-b9f9-417c-a476-9de3d0215c3e_run.yaml filter=lfs diff=lfs merge=lfs -text
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/6d7cea34-faab-46c1-ba81-ca874433cb65_run.yaml filter=lfs diff=lfs merge=lfs -text
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/bae167b8-1379-45cc-97da-218b79d83d1d_run.yaml filter=lfs diff=lfs merge=lfs -text
v2019.11.10/Cornell/d3m.primitives.data_preprocessing.low_rank_imputer.Cornell/v0.1.1/pipeline_runs/c206c51f-be64-47f8-b969-c1512ed0111c_run.yaml filter=lfs diff=lfs merge=lfs -text
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipeline_runs/0330e86a-4ab9-4338-ae98-57e9fca417b3_run.yaml.gz
0 → 100644
View file @
2c8a34a6
File added
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipeline_runs/3abccaaa-f954-486a-836f-f00acdd26665_run.yaml.gz
0 → 100644
View file @
2c8a34a6
File added
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipeline_runs/969f1796-418d-406f-b4e0-6c1cc5a74d43_run.yaml.gz
0 → 100644
View file @
2c8a34a6
File added
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipelines/0330e86a-4ab9-4338-ae98-57e9fca417b3.json
0 → 100644
View file @
2c8a34a6
{
"created"
:
"2020-01-12T11:57:18.739231Z"
,
"digest"
:
"2000748744982305088c51e15b54f94435662e67ee63c91e08bbedbcfa8b0eda"
,
"id"
:
"0330e86a-4ab9-4338-ae98-57e9fca417b3"
,
"inputs"
:
[
{
"name"
:
"inputs"
}
],
"outputs"
:
[
{
"data"
:
"steps.9.produce"
,
"name"
:
"output"
}
],
"schema"
:
"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json"
,
"steps"
:
[
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"inputs.0"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"2029603954acb505cb894594ca20a91af5f2b7bba931553f12fad544071ec911"
,
"id"
:
"4b42ce1e-9b98-4a25-b68e-fad13311eb65"
,
"name"
:
"Extract a DataFrame from a Dataset"
,
"python_path"
:
"d3m.primitives.data_transformation.dataset_to_dataframe.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.0.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"semantic_types"
:
{
"data"
:
[
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"356d1b0c08c5046167866de7a45d926f9b8dee661b773e8040cf3b69bc3eace6"
,
"id"
:
"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1"
,
"name"
:
"Extracts columns by semantic type"
,
"python_path"
:
"d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"columns"
:
{
"data"
:
[
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
62
,
63
,
64
,
65
,
66
,
67
,
68
,
69
,
70
,
71
,
72
,
73
,
74
,
75
,
76
,
77
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"101bb426df45a58c1b5f57a0c477f6535dc217fcf2334930e9c65253b1876722"
,
"id"
:
"81d7e261-e25b-4721-b091-a31cd46e99ae"
,
"name"
:
"Extracts columns"
,
"python_path"
:
"d3m.primitives.data_transformation.extract_columns.Common"
,
"version"
:
"0.1.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.2.produce"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"d9fe7ea33c426b78a03f39219342b319be88358b09091912177e0f4faa6bc552"
,
"id"
:
"d510cb7a-1782-4f51-b44c-58f0236e47c7"
,
"name"
:
"Parses strings into their types"
,
"python_path"
:
"d3m.primitives.data_transformation.column_parser.Common"
,
"version"
:
"0.5.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.0.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"semantic_types"
:
{
"data"
:
[
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"356d1b0c08c5046167866de7a45d926f9b8dee661b773e8040cf3b69bc3eace6"
,
"id"
:
"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1"
,
"name"
:
"Extracts columns by semantic type"
,
"python_path"
:
"d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.4.produce"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"12cfcf2f6f39b88ee8c45cf4da240235add9e6c817d00f32f93d0d065ade3832"
,
"id"
:
"26fc8fd3-f6b2-4c65-8afb-edb54ed2a3e4"
,
"name"
:
"Label encoder with an unseen category"
,
"python_path"
:
"d3m.primitives.data_preprocessing.label_encoder.Common"
,
"version"
:
"0.2.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.3.produce"
,
"type"
:
"CONTAINER"
},
"outputs"
:
{
"data"
:
"steps.3.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"alpha"
:
{
"data"
:
0.01
,
"type"
:
"VALUE"
},
"beta"
:
{
"data"
:
0.001
,
"type"
:
"VALUE"
},
"d"
:
{
"data"
:
50
,
"type"
:
"VALUE"
},
"maxiter"
:
{
"data"
:
1000
,
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"200124f95be4cceb8cead9aa722dc58c2d09c3410c41dab75e2e7e729b55d8b1"
,
"id"
:
"e6ee30fa-af68-4bfe-9234-5ca7e7ac8e93"
,
"name"
:
"Matrix Completion via Sparse Factorization"
,
"python_path"
:
"d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell"
,
"version"
:
"v0.1.1"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.6.produce"
,
"type"
:
"CONTAINER"
},
"outputs"
:
{
"data"
:
"steps.5.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"C"
:
{
"data"
:
100
,
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"0bc31dcee8ad75441208bb3550ea527fe64eabbc84dc9a97b59e28c9d27bc20b"
,
"id"
:
"0ae7d42d-f765-3348-a28c-57d94880aa6a"
,
"name"
:
"sklearn.svm.classes.SVC"
,
"python_path"
:
"d3m.primitives.classification.svc.SKlearn"
,
"version"
:
"2019.6.7"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.7.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"encoder"
:
{
"data"
:
5
,
"type"
:
"PRIMITIVE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"de5bbb80e57426221055205f46441d69034383e2ed4fc4eb90ecfb980f4971ee"
,
"id"
:
"39ae30f7-39ed-40af-8679-5cf108499605"
,
"name"
:
"Label decoder for UnseenLabelEncoderPrimitive"
,
"python_path"
:
"d3m.primitives.data_preprocessing.label_decoder.Common"
,
"version"
:
"0.1.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.8.produce"
,
"type"
:
"CONTAINER"
},
"reference"
:
{
"data"
:
"steps.0.produce"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"4f49e6abf7eb7ea3247eeb48f7b2fdd5fdb42f7ecc734fb3e37efada43895c6d"
,
"id"
:
"8d38b340-f83f-4877-baaa-162f8e551736"
,
"name"
:
"Construct pipeline predictions output"
,
"python_path"
:
"d3m.primitives.data_transformation.construct_predictions.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
}
]
}
\ No newline at end of file
v2019.11.10/Cornell/d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell/v0.1.1/pipelines/3abccaaa-f954-486a-836f-f00acdd26665.json
0 → 100644
View file @
2c8a34a6
{
"created"
:
"2020-01-12T11:56:17.149024Z"
,
"digest"
:
"fbd19b25deb5ff1c37d955c41e014e212a4d2c9329a8519383c625fd7da27343"
,
"id"
:
"3abccaaa-f954-486a-836f-f00acdd26665"
,
"inputs"
:
[
{
"name"
:
"inputs"
}
],
"outputs"
:
[
{
"data"
:
"steps.9.produce"
,
"name"
:
"output"
}
],
"schema"
:
"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json"
,
"steps"
:
[
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"inputs.0"
,
"type"
:
"CONTAINER"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"2029603954acb505cb894594ca20a91af5f2b7bba931553f12fad544071ec911"
,
"id"
:
"4b42ce1e-9b98-4a25-b68e-fad13311eb65"
,
"name"
:
"Extract a DataFrame from a Dataset"
,
"python_path"
:
"d3m.primitives.data_transformation.dataset_to_dataframe.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.0.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"semantic_types"
:
{
"data"
:
[
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type"
:
"VALUE"
}
},
"outputs"
:
[
{
"id"
:
"produce"
}
],
"primitive"
:
{
"digest"
:
"356d1b0c08c5046167866de7a45d926f9b8dee661b773e8040cf3b69bc3eace6"
,
"id"
:
"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1"
,
"name"
:
"Extracts columns by semantic type"
,
"python_path"
:
"d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common"
,
"version"
:
"0.3.0"
},
"type"
:
"PRIMITIVE"
},
{
"arguments"
:
{
"inputs"
:
{
"data"
:
"steps.1.produce"
,
"type"
:
"CONTAINER"
}
},
"hyperparams"
:
{
"columns"
:
{
"data"
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
52
,
53
,
54
,
55
,
56
,
57
,