Commit 21e1db9e authored by Jarod Wang's avatar Jarod Wang Committed by Mitar

Enhancement

parent 3e688fb5
...@@ -95,7 +95,7 @@ ...@@ -95,7 +95,7 @@
"type": "PRIMITIVE", "type": "PRIMITIVE",
"primitive": { "primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde", "id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4", "version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn", "python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer" "name": "sklearn.impute.SimpleImputer"
}, },
......
{
"id": "0fea2402-abac-4a26-bb56-98d021a0b753",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-29T17:02:28.819341Z",
"context": "EVALUATION",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
1,
17,
18
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "84f39131-6618-4d90-9590-b79d41dfb093",
"version": "2.2.0",
"python_path": "d3m.primitives.classification.search.Find_projections",
"name": "find projections"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"pipeline_rank": "1"
}
\ No newline at end of file
{
"problem": "185_baseball_problem",
"full_inputs": [
"185_baseball_dataset"
],
"train_inputs": [
"185_baseball_dataset_TRAIN"
],
"test_inputs": [
"185_baseball_dataset_TEST"
],
"score_inputs": [
"185_baseball_dataset_SCORE"
]
}
\ No newline at end of file
{
"id": "ebcde203-46ef-403c-9f99-9e91234a2026",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-29T18:55:29.543049Z",
"context": "EVALUATION",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
1,
17,
18
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "448590e7-8cf6-4bfd-abc4-db2980d8114e",
"version": "2.2.0",
"python_path": "d3m.primitives.classification.search_hybrid.Find_projections",
"name": "find projections"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"pipeline_rank": "1"
}
\ No newline at end of file
{
"problem": "185_baseball_problem",
"full_inputs": [
"185_baseball_dataset"
],
"train_inputs": [
"185_baseball_dataset_TRAIN"
],
"test_inputs": [
"185_baseball_dataset_TEST"
],
"score_inputs": [
"185_baseball_dataset_SCORE"
]
}
\ No newline at end of file
...@@ -93,7 +93,7 @@ ...@@ -93,7 +93,7 @@
"type": "PRIMITIVE", "type": "PRIMITIVE",
"primitive": { "primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde", "id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4", "version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn", "python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer" "name": "sklearn.impute.SimpleImputer"
}, },
......
...@@ -93,7 +93,7 @@ ...@@ -93,7 +93,7 @@
"type": "PRIMITIVE", "type": "PRIMITIVE",
"primitive": { "primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde", "id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4", "version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn", "python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer" "name": "sklearn.impute.SimpleImputer"
}, },
......
...@@ -121,7 +121,7 @@ ...@@ -121,7 +121,7 @@
"type": "PRIMITIVE", "type": "PRIMITIVE",
"primitive": { "primitive": {
"id": "b9c81b40-8ed1-3b23-80cf-0d6fe6863962", "id": "b9c81b40-8ed1-3b23-80cf-0d6fe6863962",
"version": "v2019.4.4", "version": "2019.4.4",
"python_path": "d3m.primitives.classification.logistic_regression.SKlearn", "python_path": "d3m.primitives.classification.logistic_regression.SKlearn",
"name": "sklearn.linear_model.logistic.LogisticRegression" "name": "sklearn.linear_model.logistic.LogisticRegression"
}, },
......
...@@ -121,7 +121,7 @@ ...@@ -121,7 +121,7 @@
"type": "PRIMITIVE", "type": "PRIMITIVE",
"primitive": { "primitive": {
"id": "b9c81b40-8ed1-3b23-80cf-0d6fe6863962", "id": "b9c81b40-8ed1-3b23-80cf-0d6fe6863962",
"version": "v2019.2.27", "version": "2019.4.4",
"python_path": "d3m.primitives.classification.logistic_regression.SKlearn", "python_path": "d3m.primitives.classification.logistic_regression.SKlearn",
"name": "sklearn.linear_model.logistic.LogisticRegression" "name": "sklearn.linear_model.logistic.LogisticRegression"
}, },
......
...@@ -96,7 +96,7 @@ ...@@ -96,7 +96,7 @@
"type": "PRIMITIVE", "type": "PRIMITIVE",
"primitive": { "primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde", "id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4", "version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn", "python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer" "name": "sklearn.impute.SimpleImputer"
}, },
......
{
"id": "528f9e75-a3a7-4a6e-b885-8f6a9e19a6e0",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-29T19:25:54.829232Z",
"context": "EVALUATION",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
1,
6,
7,
8
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
<