Commit 1e2a015c authored by jgleason's avatar jgleason
Browse files

add pipelines for recently added forecasting and classification ts datasets

parent 378ac767
......@@ -130,3 +130,13 @@ v2020.1.9/ISI/d3m.primitives.feature_extraction.vgg16_image_feature.DSBOX/1.5.3/
v2020.1.9/Distil/d3m.primitives.digital_image_processing.convolutional_neural_net.Gator/1.0.2/pipeline_runs/uu_101_object_categories_MIN_METADATA_validation.yml filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.digital_image_processing.convolutional_neural_net.Gator/1.0.2/pipeline_runs/uu_101_object_categories_MIN_METADATA_small_sample.yml filter=lfs diff=lfs merge=lfs -text
v2020.1.9/TAMU/d3m.primitives.data_transformation.horizontal_concat.TAMU/0.1.0/pipeline_runs/1.yaml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.lstm.DeepAR/1.2.0/pipeline_runs/LL1_terra_canopy_height_long_form_s4_90_MIN_METADATA.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.lstm.DeepAR/1.2.0/pipeline_runs/LL1_PHEM_weeklyData_malnutrition_MIN_METADATA_force_count_data.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.vector_autoregression.VAR/1.2.0/pipeline_runs/LL1_PHEM_weeklyData_malnutrition_MIN_METADATA.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.vector_autoregression.VAR/1.2.0/pipeline_runs/LL1_PHEM_Monthly_Malnutrition_MIN_METADATA.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.lstm.DeepAR/1.2.0/pipeline_runs/LL1_PHEM_Monthly_Malnutrition_MIN_METADATA_force_count_data.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.lstm.DeepAR/1.2.0/pipeline_runs/LL1_PHEM_weeklyData_malnutrition_MIN_METADATA.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.lstm.DeepAR/1.2.0/pipeline_runs/LL1_terra_leaf_angle_mean_long_form_s4_MIN_METADATA_force_count_data.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.vector_autoregression.VAR/1.2.0/pipeline_runs/LL1_terra_leaf_angle_mean_long_form_s4_MIN_METADATA.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.lstm.DeepAR/1.2.0/pipeline_runs/LL1_terra_canopy_height_long_form_s4_90_MIN_METADATA_force_count_data.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/Distil/d3m.primitives.time_series_forecasting.lstm.DeepAR/1.2.0/pipeline_runs/LL1_terra_canopy_height_long_form_s4_70_MIN_METADATA_force_count_data.yml.gz filter=lfs diff=lfs merge=lfs -text
{"id": "f2598363-2e5d-48aa-a27b-84de046210f1", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2020-01-17T15:47:08.795627Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.6.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "6a1ce3ee-ee70-428b-b1ff-0490bdb23023", "version": "0.1.1", "python_path": "d3m.primitives.data_preprocessing.data_cleaning.DistilTimeSeriesFormatter", "name": "Time series formatter", "digest": "64ea9c8ccc835f1563640aeba46ec5d25dd7c08a978be14a225daf83b642ab80"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "a1a0109be87a6ae578fd20e9d46c70c806059076c041b80b6314e7e41cf62d82"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "a1a0109be87a6ae578fd20e9d46c70c806059076c041b80b6314e7e41cf62d82"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.6.0", "python_path": "d3m.primitives.data_transformation.column_parser.Common", "name": "Parses strings into their types", "digest": "b020e14e3d4f1e4266aa8a0680d83afcf2862300549c6f6c903742d7d171f879"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"parse_semantic_types": {"type": "VALUE", "data": ["http://schema.org/Boolean", "http://schema.org/Integer", "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/FloatVector"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common", "name": "Extracts columns by semantic type", "digest": "505df38f9be4964ff19683ab3e185f19333fb35c26121c12a1c55bddd9d38f72"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.3.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"semantic_types": {"type": "VALUE", "data": ["https://metadata.datadrivendiscovery.org/types/Target", "https://metadata.datadrivendiscovery.org/types/TrueTarget", "https://metadata.datadrivendiscovery.org/types/SuggestedTarget"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "a55cef3a-a7a9-411e-9dde-5c935ff3504b", "version": "1.2.0", "python_path": "d3m.primitives.time_series_classification.convolutional_neural_net.LSTM_FCN", "name": "lstm_fcn", "digest": "ea0b13b8732e469e3c210b68fa4d5c089b06fe667e3f8c0a097537c4caea3892"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.4.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.construct_predictions.Common", "name": "Construct pipeline predictions output", "digest": "674a644333a3a481769591341591461b06de566fef7439010284739194e18af8"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.5.produce"}, "reference": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "11313c72d65668dd959b4fee006e1a7d38dabef5443b4d82f42223449ac28439"}
\ No newline at end of file
{"id": "316f4b74-e5e8-4d8a-a990-886aef79247d", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2020-01-23T20:25:28.590202Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.6.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "6a1ce3ee-ee70-428b-b1ff-0490bdb23023", "version": "0.1.1", "python_path": "d3m.primitives.data_preprocessing.data_cleaning.DistilTimeSeriesFormatter", "name": "Time series formatter", "digest": "64ea9c8ccc835f1563640aeba46ec5d25dd7c08a978be14a225daf83b642ab80"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.6.0", "python_path": "d3m.primitives.data_transformation.column_parser.Common", "name": "Parses strings into their types", "digest": "f1215fe3351a2e8bf495f9ed5ed50e88b30d78d4d7ebd9e13bb544e63a10994b"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"parse_semantic_types": {"type": "VALUE", "data": ["http://schema.org/Boolean", "http://schema.org/Integer", "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/FloatVector"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common", "name": "Extracts columns by semantic type", "digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.3.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"semantic_types": {"type": "VALUE", "data": ["https://metadata.datadrivendiscovery.org/types/Target", "https://metadata.datadrivendiscovery.org/types/TrueTarget", "https://metadata.datadrivendiscovery.org/types/SuggestedTarget"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "a55cef3a-a7a9-411e-9dde-5c935ff3504b", "version": "1.2.0", "python_path": "d3m.primitives.time_series_classification.convolutional_neural_net.LSTM_FCN", "name": "lstm_fcn", "digest": "ea0b13b8732e469e3c210b68fa4d5c089b06fe667e3f8c0a097537c4caea3892"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.4.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"use_multiprocessing": {"type": "VALUE", "data": false}}}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.construct_predictions.Common", "name": "Construct pipeline predictions output", "digest": "2994d9885ddeb72f5a47a8fb04e27fe3f684adebf7c5dc27cb56392475dbb29c"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.5.produce"}, "reference": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "4529627dcf0eab5b6662657629a5ea02f32144e5da93237c96d2ebea08719d0a"}
\ No newline at end of file
{"id": "3b55ca79-82aa-4791-92dd-9cbe76251c8a", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2020-01-23T20:26:09.818605Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.6.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "6a1ce3ee-ee70-428b-b1ff-0490bdb23023", "version": "0.1.1", "python_path": "d3m.primitives.data_preprocessing.data_cleaning.DistilTimeSeriesFormatter", "name": "Time series formatter", "digest": "64ea9c8ccc835f1563640aeba46ec5d25dd7c08a978be14a225daf83b642ab80"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.6.0", "python_path": "d3m.primitives.data_transformation.column_parser.Common", "name": "Parses strings into their types", "digest": "f1215fe3351a2e8bf495f9ed5ed50e88b30d78d4d7ebd9e13bb544e63a10994b"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"parse_semantic_types": {"type": "VALUE", "data": ["http://schema.org/Boolean", "http://schema.org/Integer", "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/FloatVector"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common", "name": "Extracts columns by semantic type", "digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.3.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"semantic_types": {"type": "VALUE", "data": ["https://metadata.datadrivendiscovery.org/types/Target", "https://metadata.datadrivendiscovery.org/types/TrueTarget", "https://metadata.datadrivendiscovery.org/types/SuggestedTarget"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "a55cef3a-a7a9-411e-9dde-5c935ff3504b", "version": "1.2.0", "python_path": "d3m.primitives.time_series_classification.convolutional_neural_net.LSTM_FCN", "name": "lstm_fcn", "digest": "ea0b13b8732e469e3c210b68fa4d5c089b06fe667e3f8c0a097537c4caea3892"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.4.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"use_multiprocessing": {"type": "VALUE", "data": false}, "attention_lstm": {"type": "VALUE", "data": true}}}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.construct_predictions.Common", "name": "Construct pipeline predictions output", "digest": "2994d9885ddeb72f5a47a8fb04e27fe3f684adebf7c5dc27cb56392475dbb29c"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.5.produce"}, "reference": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "e5c23ee76e0b7d7f892897af9200e9820d08647fcc6a18feca7e61b431a667c9"}
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment