Commit 19501654 authored by Sujen's avatar Sujen
Browse files

Merge branch 'cmu-2020.2.6-1724' into 'master'

update primitives and pipelines for new datasets

See merge request !187
parents 3ead12fb a4e9ec56
Pipeline #115961674 passed with stages
in 87 minutes and 23 seconds
......@@ -149,3 +149,5 @@ v2020.1.9/common-primitives/d3m.primitives.data_transformation.grouping_field_co
v2020.1.9/common-primitives/d3m.primitives.schema_discovery.profiler.Common/0.2.0/pipeline_runs/pipeline_run_group_field_compose.yml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/ISI/d3m.primitives.feature_extraction.yolo.DSBOX/1.5.3/pipeline_runs/pipeline_run_2.yaml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/ISI/d3m.primitives.data_transformation.to_numeric.DSBOX/1.5.3/pipeline_runs/pipeline_run_2.yaml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/CMU/d3m.primitives.semisupervised_classification.iterative_labeling.AutonBox/0.2.1/pipeline_runs/pipeline_run_SEMI_1217_click_prediction_small_MIN_METADATA.yaml.gz filter=lfs diff=lfs merge=lfs -text
v2020.1.9/CMU/d3m.primitives.semisupervised_classification.iterative_labeling.AutonBox/0.2.1/pipeline_runs/pipeline_run_SEMI_155_pokerhand_MIN_METADATA.yaml.gz filter=lfs diff=lfs merge=lfs -text
{
"id": "9d5c184f-bee0-4c42-81a3-2cf56eb7a539",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-02-06T21:26:21.866422Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.8.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"version": "0.2.0",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"name": "Determine missing semantic types for columns automatically",
"digest": "8b12a9aececdc5b7a4d5ef47cd04cda75592fd24f49922776b614d4bbeeb97f1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "f1215fe3351a2e8bf495f9ed5ed50e88b30d78d4d7ebd9e13bb544e63a10994b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "c977e879-1bf5-3829-b5b0-39b00233aff5",
"version": "2019.11.13",
"python_path": "d3m.primitives.data_transformation.one_hot_encoder.SKlearn",
"name": "sklearn.preprocessing.data.OneHotEncoder",
"digest": "a715f1783a3bead01eb5cf95df71b31deb88790a2db4ce7e04df2a8b144b1d81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "854727ed-c82c-3137-ac59-fd52bc9ba385",
"version": "2019.11.13",
"python_path": "d3m.primitives.data_preprocessing.robust_scaler.SKlearn",
"name": "sklearn.preprocessing.data.RobustScaler",
"digest": "11ad3b6f497382297ae772a42a0345509133aa1b4f783b84299d990c5ca2ea08"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e770fae6-da6d-45f8-86bf-38a121a4e65a",
"version": "3.1.1",
"python_path": "d3m.primitives.classification.cover_tree.Fastlvm",
"name": "Nearest Neighbor Classification with Cover Trees",
"digest": "ccf8f908859dcc5120ac146bfc8cdd7a793caaaadccd17f2af9d8c85662efe45"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 1
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "2994d9885ddeb72f5a47a8fb04e27fe3f684adebf7c5dc27cb56392475dbb29c"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.7.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "5029feec8b1f8806d12a1f5ad45c52cf5650480dc511c34a69d0dfb2d9261881"
}
\ No newline at end of file
{
"id": "795e5c6a-acbb-4cfe-b327-ad70de6fe0fb",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-02-06T20:36:48.585175Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.7.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e193afa1-b45e-4d29-918f-5bb1fa3b88a7",
"version": "0.2.0",
"python_path": "d3m.primitives.schema_discovery.profiler.Common",
"name": "Determine missing semantic types for columns automatically",
"digest": "8b12a9aececdc5b7a4d5ef47cd04cda75592fd24f49922776b614d4bbeeb97f1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "f1215fe3351a2e8bf495f9ed5ed50e88b30d78d4d7ebd9e13bb544e63a10994b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"parse_semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/Integer",
"http://schema.org/Float"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.11.13",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "1fbe6321949de3f9bd1d93c6900cd5c3b3ee4b1a01506b89c69a776a9d27bf7a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "84f39131-6618-4d90-9590-b79d41dfb093",
"version": "2.3.1",
"python_path": "d3m.primitives.classification.search.Find_projections",
"name": "find projections",
"digest": "a17e238943f9e8450a57195e9c9e9750b3e8efd081e86eda2f71bf4e11134ba6"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "2994d9885ddeb72f5a47a8fb04e27fe3f684adebf7c5dc27cb56392475dbb29c"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "17b0dcd847ba2d14b2645a2058bc45316d283770dc616fce4fea9b552d7c520f"
}
\ No newline at end of file
......@@ -52,7 +52,7 @@
"version": "0.1",
"python_path": "d3m.primitives.data_cleaning.clean_augmentation.AutonBox",
"name": "Clean dataset of unaugmented rows",
"digest": "84c862988397f5bc608668e5b6fa67b01878832e7e6121723a52dc4c8223f44e"
"digest": "a93d8ed883f147c3bea21b6677c174e846ea11a3562fafc1515d1fb25d3fe476"
},
"hyperparams": {
"original_columns": {
......@@ -578,7 +578,7 @@
"version": "0.1",
"python_path": "d3m.primitives.data_transformation.merge_partial_predictions.AutonBox",
"name": "Merge predictions of multiple models",
"digest": "15cb0fa0ef3eceb06ffe9cf6739e4f0dee717eb92f22c424581a6952d72f0445"