Commit 01552606 authored by David M Johnson's avatar David M Johnson

Trying this again...

parent dd4fac22
{
"id": "cb9b78a0-5fcf-40a4-be72-eaf200a12274",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-05-25T04:55:46.769542Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d268f582f5bf30206f1e43ef46f435576a30413132bc73279f3fca36937184eb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "4fb135af3e84bc222c9cca22719e05e5588e2357d4c56fac1c16bdf943d6a9c9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "6d94cfb0-4225-4446-b5b1-afd8803f2bf5",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "c8d801cd88e7131aa00fca03e901f26e1c1823d0327966f16e5e8fb7a9c1db94"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "2047d35d00f5b3316a0f275a5ce8bf8be99d9c8653dbbeadc2cb332ca53fb4db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "1fb337b1987ecedebfa35bbd80ac6125f4a7f71435b02d3b349ef5547588bb71"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "295569bb1f40826c2757f68117542abd3ab117125370cebe5ba5d7ef1fdadc23"
}
\ No newline at end of file
{
"problem": [
"1491_one_hundred_plants_margin_clust_problem"
],
"full_inputs": [
"1491_one_hundred_plants_margin_clust_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TEST"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@cc9f80cc2411a2e6f2c56174fc1115b5eeac3e64#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@42ad863aaaa75d72876e34f8ac3bda14b8c6f865#egg=spider"
},
{
"type": "UBUNTU",
......@@ -284,5 +284,5 @@
}
},
"structural_type": "spider.cluster.ekss.ekss.EKSS",
"digest": "786942b9e1b7c765abb313e048899d7a031278a6554eb5982a2b44b10fc88616"
"digest": "c8d801cd88e7131aa00fca03e901f26e1c1823d0327966f16e5e8fb7a9c1db94"
}
{
"id": "da2f79cc-da69-47f3-9f38-dbf4c30f18b5",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-05-25T04:55:44.451602Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d268f582f5bf30206f1e43ef46f435576a30413132bc73279f3fca36937184eb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "4fb135af3e84bc222c9cca22719e05e5588e2357d4c56fac1c16bdf943d6a9c9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "044e5c71-7507-4f58-a139-bc5481179d62",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "e177c4c85da93b531f7de0b7a3d4c5d8e1a7ee33fe4b8739eaac929579407701"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "2047d35d00f5b3316a0f275a5ce8bf8be99d9c8653dbbeadc2cb332ca53fb4db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "1fb337b1987ecedebfa35bbd80ac6125f4a7f71435b02d3b349ef5547588bb71"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "75c26d9268ea5be1bb7eed12ad1b513ba59372504407421bc1db9e3b66e1a723"
}
\ No newline at end of file
{
"problem": [
"1491_one_hundred_plants_margin_clust_problem"
],
"full_inputs": [
"1491_one_hundred_plants_margin_clust_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TEST"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -20,7 +20,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@cc9f80cc2411a2e6f2c56174fc1115b5eeac3e64#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@42ad863aaaa75d72876e34f8ac3bda14b8c6f865#egg=spider"
},
{
"type": "UBUNTU",
......@@ -241,5 +241,5 @@
}
},
"structural_type": "spider.cluster.kss.kss.KSS",
"digest": "6839864b824fc39863e279341b2a7c22c267e575a33adaa06710ab70f45e15ad"
"digest": "e177c4c85da93b531f7de0b7a3d4c5d8e1a7ee33fe4b8739eaac929579407701"
}
{
"id": "613f38d4-a257-49c2-adeb-0a41f1e819cf",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-05-25T04:55:48.936299Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d268f582f5bf30206f1e43ef46f435576a30413132bc73279f3fca36937184eb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "4fb135af3e84bc222c9cca22719e05e5588e2357d4c56fac1c16bdf943d6a9c9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "83083e82-088b-47f4-9c0b-ba29adf5a51d",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",
"name": "SSC_ADMM",
"digest": "916212a4b9aaac939e1429e86cde1fd148fab4129e2c0a2540c43f29c521dc35"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "2047d35d00f5b3316a0f275a5ce8bf8be99d9c8653dbbeadc2cb332ca53fb4db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "1fb337b1987ecedebfa35bbd80ac6125f4a7f71435b02d3b349ef5547588bb71"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "16ae2d8e5cbb2b4005397be2ea2797e6100c5ab9d82c8a7e4887e62c3c3e04dc"
}
\ No newline at end of file
{
"problem": [
"1491_one_hundred_plants_margin_clust_problem"
],
"full_inputs": [