ebcde203-46ef-403c-9f99-9e91234a2026.json 5.83 KB
Newer Older
Jarod Wang's avatar
Jarod Wang committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
{
    "id": "ebcde203-46ef-403c-9f99-9e91234a2026",
    "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
    "created": "2019-04-29T18:55:29.543049Z",
    "context": "EVALUATION",
    "inputs": [
        {
            "name": "dataset inputs"
        }
    ],
    "outputs": [
        {
            "data": "steps.6.produce",
            "name": "output predictions"
        }
    ],
    "steps": [
        {
            "type": "PRIMITIVE",
            "primitive": {
                "id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
                "version": "0.3.0",
                "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
                "name": "Extract a DataFrame from a Dataset"
            },
            "arguments": {
                "inputs": {
                    "type": "CONTAINER",
                    "data": "inputs.0"
                }
            },
            "outputs": [
                {
                    "id": "produce"
                }
            ]
        },
        {
            "type": "PRIMITIVE",
            "primitive": {
                "id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
                "version": "0.5.0",
                "python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
                "name": "Parses strings into their types"
            },
            "arguments": {
                "inputs": {
                    "type": "CONTAINER",
                    "data": "steps.0.produce"
                }
            },
            "outputs": [
                {
                    "id": "produce"
                }
            ]
        },
        {
            "type": "PRIMITIVE",
            "primitive": {
                "id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
                "version": "0.2.0",
                "python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
                "name": "Extracts columns by semantic type"
            },
            "arguments": {
                "inputs": {
                    "type": "CONTAINER",
                    "data": "steps.1.produce"
                }
            },
            "outputs": [
                {
                    "id": "produce"
                }
            ],
            "hyperparams": {
                "semantic_types": {
                    "type": "VALUE",
                    "data": [
                        "https://metadata.datadrivendiscovery.org/types/Attribute"
                    ]
                },
                "exclude_columns": {
                    "type": "VALUE",
                    "data": [
                        1,
                        17,
                        18
                    ]
                }
            }
        },
        {
            "type": "PRIMITIVE",
            "primitive": {
                "id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
                "version": "2019.4.4",
                "python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
                "name": "sklearn.impute.SimpleImputer"
            },
            "arguments": {
                "inputs": {
                    "type": "CONTAINER",
                    "data": "steps.2.produce"
                }
            },
            "outputs": [
                {
                    "id": "produce"
                }
            ]
        },
        {
            "type": "PRIMITIVE",
            "primitive": {
                "id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
                "version": "0.2.0",
                "python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
                "name": "Extracts columns by semantic type"
            },
            "arguments": {
                "inputs": {
                    "type": "CONTAINER",
                    "data": "steps.1.produce"
                }
            },
            "outputs": [
                {
                    "id": "produce"
                }
            ],
            "hyperparams": {
                "semantic_types": {
                    "type": "VALUE",
                    "data": [
                        "https://metadata.datadrivendiscovery.org/types/TrueTarget"
                    ]
                }
            }
        },
        {
            "type": "PRIMITIVE",
            "primitive": {
                "id": "448590e7-8cf6-4bfd-abc4-db2980d8114e",
                "version": "2.2.0",
                "python_path": "d3m.primitives.classification.search_hybrid.Find_projections",
                "name": "find projections"
            },
            "arguments": {
                "inputs": {
                    "type": "CONTAINER",
                    "data": "steps.3.produce"
                },
                "outputs": {
                    "type": "CONTAINER",
                    "data": "steps.4.produce"
                }
            },
            "outputs": [
                {
                    "id": "produce"
                }
            ]
        },
        {
            "type": "PRIMITIVE",
            "primitive": {
                "id": "8d38b340-f83f-4877-baaa-162f8e551736",
                "version": "0.3.0",
                "python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
                "name": "Construct pipeline predictions output"
            },
            "arguments": {
                "inputs": {
                    "type": "CONTAINER",
                    "data": "steps.5.produce"
                },
                "reference": {
                    "type": "CONTAINER",
                    "data": "steps.0.produce"
                }
            },
            "outputs": [
                {
                    "id": "produce"
                }
            ]
        }
    ],
    "pipeline_rank": "1"
}