The

BOOTBOOT
Protocol

Specification and Manual

First Edition
2017 - 2021
Copyright

The BOOTBOOT Protocol and the reference implementations are the intellectual property of

Baldaszti Zoltán Tamás (BZT) bztemail at gmail dot com

and licensed under the

MIT licence

Copyright (C) 2017 - 2021 bzt (bztsrc@gitlab)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Table of Contents

Preface..5
Introduction...7
Specification...9
 Booting an Operating System..9
 On Operating System Kernel Designs...9
 The Initial Ramdisk Image...9
 The Boot Partition..10
 File System Drivers...11
 Kernel Format...12
 Protocol Levels...12
 Static...12
 Dynamic..12
 Entry Point...12
 Environment...13
 The bootboot Structure...14
 Header Fields..14
 Platform Independent..14
 Platform Dependent Pointers...16
 Memory Map Entries..16
 Linear Frame Buffer..17
 Machine State..17
Reference Implementations...19
 IBM PC BIOS / Multiboot / El Torito / Linux boot..20
 Initial Ramdisk..20
 Memory Map..20
 Linear Frame Buffer...20
 Machine State..20
 Limitations...20
 Booting..20
 IBM PC UEFI..21
 Initial Ramdisk..21
 Memory Map..21
 Linear Frame Buffer...21
 Machine State..21
 Limitations...21
 Booting..21
Coreboot payload..22
 Initial Ramdisk..22
 Memory Map...22
 Linear Frame Buffer...22
BOOBOOT Protocol

Machine State..22
Limitations..22
Booting..22
Raspberry Pi 3 / 4..23
Initial Ramdisk..23
Memory Map..23
Linear Frame Buffer..23
Machine State..23
Limitations..23
Booting..23
The mkbootimg Disk Image Creator Tool..24
Creating an initrd ROM image...24
Creating an ESP FAT partition..24
Creating a hybrid GPT disk / ISO9660 CDROM/DVD image.......................................24
Checking kernel for BOOBOOT Protocol Level Compliance.......................................24
APPENDIX..25
Creating a GPT ESP partition...25
A sample BOOBOOT compatible kernel...25
A sample Makefile...27
A sample linker script...27
A sample Symmetric Multi Processing code...28
A sample grub.cfg entry..28
A sample mkbootimg.json configuration file..28
Loading emergency initrd over serial...28
Troubleshooting..29
INDEX...31
Preface

“A beginning is a very delicate time.”

/ Frank Herbert /

In the last decade of personal computers era big changes happened in the way how computers boot. With the appearance of 64 bit, for the first time in computer’s history, the memory address space became bigger than the storage capacity altogether. This yielded fundamental changes in firmware.

Also storage capacity kept growing if not according to Moore’s Law, but in a very fast curve. Old ways of storing partitioned data became obsolete, and new partitioning tables were invented, one of which became the new de facto standard.

Unfortunately the firmware that introduced the new partitioning format is way too complex and bloated, and therefore many manufacturers refuse to implement it (specially on small hardware with limited resources). As a result, there is no de facto standard for a booting interface, different hardware use different, incompatible ways of booting. Not all firmware implemented that new partitioning table either. To make things worse, many of them also kept backward compatibility with ancient machines.

There are attempts to make booting unified, but unfortunately in a so complex and bloated way again, that one could easily call that loader an OS of it’s own right.

Therefore I’ve created a specification for a common way of starting an operating system, and I’ve provided several different reference implementations one for each platform. The goal is, by the time those small platform dependent code’s execution finished, there’s a common 64 bit environment on all platforms, capable of running an unmodified C code compiled with the same linker script. The source and the pre-compiled binaries (along with an example C, C++, Pascal, Ada, Rust and Go kernels) can be downloaded at:

https://gitlab.com/bztsrc/bootboot

Those reference implementations are Open Source and Free Software, and come without any warranty in the hope that they will be useful.

Baldaszti Zoltán Tamás
BOOT Protocol

Page left blank intentionally
Introduction

When you turn on a computer, an operating system has to be loaded. There are sophisticated programs to allow you to choose from multiple systems on a single machine such as GRUB. Those are called boot managers. BOOTBOOT is not one of them. It is a boot loader, with the goal of providing the same 64 bit environment on several different platforms (to store the bytes “BOOTBOOT” in memory requires 64 bits). If you want to have multiple boot options on one computer, you must install a boot manager with a BOOTBOOT loader option in order to boot a BOOTBOOT compatible operating system. If you are fine with having only one operating system per machine, there’s no need for a boot manager, the boot loader alone is enough.

The operating system can be loaded in many different ways. From ROM, from flash, from a disk, from SD card, over serial cable or over the network etc. The BOOTBOOT Protocol does not specify these. Neither does it specify the archive image’s format of the ramdisk used. These are subject to change from time to time and from system to system.

The protocol mandates though that if the operating system is stored on disk, that disk must follow the GUID Partitioning Table format (or any later de facto standard partitioning format). As not all firmware support partitioning equally, it is the loader’s responsibility to hide this and locate the operating system on a partitioned disk. Therefore end users do not have to care about firmware differences when they want to boot from a disk partitioned and formatted on another machine.

A few words on the operating system’s kernel format itself. As of writing, there is no de facto standard, but two most widely used formats: the Executable and Linkable Format, and the Portable Executable format. It would be unfair to say one is better than the other, since they both represent the same information just in a different way. Therefore both are supported by the protocol. If one of them (or a new format) became the standard, the protocol has to be revised, and should focus on that format alone, so that the end users don’t have to care about executable format either.

Finally the organization of this documentation. There are two parts: first part describes the protocol in general, and the second part describes the reference implementations on different platforms.
Page left blank intentionally
Specification

The first part of this documentation contains the BOOTBOOT Protocol specification.

Booting an Operating System

The term booting a computer refers to many things, but at the end of the day it means only one: pass the control to the operating system’s kernel along with environmental information.

On Operating System Kernel Designs

There are two common kinds of kernels. First one contains everything in a single, mostly statically linked image (monolithic kernel). The second kind separated into several files. That keeps the privileged duties to a small kernel (micro-kernel, exokernel, hypervisor etc.) and everything else is pushed into separated user space tasks which usually are stored in separate files (but not necessarily, see Minix).

Both kinds may have initial ramdisks. Used to store files in memory during boot prior to any on disk file system available. For monolithic design that image is usually loaded along with the kernel and (as drivers are included in the kernel), optional. On the other hand for micro-kernels such an archive image for ramdisk is essential if each task’s code is in a separate file.

The creator of BOOTBOOT Protocol and the vast majority of OS developers consider the micro-kernel design more secure and flexible (and also most monolithic design already have their own way of booting for each and every platform), so the BOOTBOOT Protocol is for micro-kernels.

The Initial Ramdisk Image

As the protocol focuses on micro-kernel design which needs several other files (drivers and such), it requires that the operating system has an initial ramdisk image. And as the image has to be loaded anyway, it’s beneficial to store the kernel itself inside. This is not common as of writing, but simplifies booting procedure by reducing the number of required files to one just as with the monolithic design. Note that the protocol is flexible enough to load a single, statically linked kernel with more tasks (like Minix) as a “ramdisk” image.

Compression on ramdisk image is optional. Reference implementations support gzip deflate compressed images, but other implementation may use different algorithms as long as the compression can be detected by magic bytes. A BOOTBOOT compliant loader will uncompress the image once loaded into memory. As the whole image is loaded entirely, it should be kept small (few megabytes).
The uncompressed format of the ramdisk image is not part of the protocol. Each and every operating
system are free to choose what’s best for it’s purpose. Therefore BOOTBOOT Protocol only specifies an
Application Programming Interface to parse the image for a file, and a fallback option.

The Boot Partition

The protocol does not describe the whereabouts of the initial ramdisk image. It only expects that a
BOOTBOOT Protocol compliant loader can locate, load and uncompress it into RAM. The reference
implementations use files over serial, ROM and disks with boot partition as source.

BOOTBOOT Protocol assumes that the disk partitioning format is the GUID Partitioning Table. The
reason for this is inter-operability among different operating systems.

A boot partition is a small partition at the beginning of the disk. It may store files relevant to the
firmware, but most importantly for the protocol, the initial ramdisk image.

If the boot partition has a file system, for compatibility reasons it has to be FAT16 or FAT32 formatted.
Many firmware (such as UEFI and the Raspberry Pi) mandates this too for their firmware partition. If
the boot partition holds firmware files for booting, it should have the type of “EFI System Partition” or
ESP in short. This is so because GPT was introduced with the EFI firmware (superseded by UEFI). In
this set-up the initial ramdisk image is a file on the boot partition, located in:

 BOOTBOOT\INITRD

or with multiple architecture support on the same partition (only for live OS images):

 BOOTBOOT\(arch)

like BOOTBOOT\X86_64, BOOTBOOT\AARCH64 or BOOTBOOT\RISCV64.

If the firmware’s partition does not use a file system, or does not understand FAT16 or FAT32 or has a
specific type (so that ESP type cannot be used), then firmware partition and boot partition became two
separate partitions.

In that case an operating system designer has two option: either creating another partition with FAT and
a BOOTBOOT directory with the initial ramdisk file in it; or they can put the ramdisk image on the
whole partition, leaving the FAT file system entirely out. In either case, the boot partition has to be
marked as $EFI_PART_USED_BY_OS$ (bit 2 in GPT Partition Entry’s attribute flag set).

Keep in mind that ramdisk image will be loaded entirely in memory, so if it occupies the whole boot
partition, that partition should be small (few megabytes).
File System Drivers

As mentioned before, the BOOTBOOT Protocol does not specify the initial ramdisk format, instead it uses so called file system drivers with one API function:

```c
typedef struct {
    uint8_t *ptr;
    uint64_t size;
} file_t;

file_t myfs_initrd(uint8_t *initrd, char *filename);
```

In the reference implementations’ source those file system drivers are separated in a file called `fs.h` (or `fs.inc`). Each supported ramdisk image format has exactly one function in those files.

Each function receives the address of the initial ramdisk image, and a pointer to a zero terminated ASCII filename. If the file referenced by that filename found, the function should return a struct with a pointer to the first byte of the file content and the content’s size. If needed, the file system driver allowed to allocate memory. On error (when the format not recognized or the file is not found) the function must return `{NULL, 0}`. The protocol expects that a BOOTBOOT compliant loader iterates on the list of drivers until one returns a valid result.

If all the file system drivers failed and returned `{NULL,0}`, a fallback driver will be initiated. That fallback driver will scan the ramdisk for the first file which has a valid executable format for the architecture. So file permissions and attributes does not matter, only the file header counts.

If the ramdisk format is supported by one of the file system drivers, the name of the kernel can be passed in the environment with the key `kernel`.

The reference implementations support the following archive and file system image formats:

- `statically linked executable` (all files linked together into one executable)
- `ustar`
- `cpio` (hpodc, newc and crc variants)
- `FS/Z` (OS/Z’s native file system)
- `SFS` (osdev.org’s own file system)
- `James Molloy’s initrd` (popular among hobby OS developers for some reason)
- `EchFS` (echidnaFS, a very very simple file system)

Other archive and file system format support can be added any time according the needs of the operating system, with one exception. The FAT file system is not allowed as initial ramdisk format. This is not a serious restriction as FAT is not efficient as an in memory file system, so it’s unlikely someone wants to use that. Ustar or cpio would be a far better choice.
Kernel Format

The kernel executable should be either an **Executable and Linkable Format** (ELF), or a **Portable Executable** (PE). In both cases the format itself must be 64 bit (**ELFCLASS64** in ELF and **PE_OPT_MAGIC_PE32PLUS** in PE). The code segment must be compiled for a native 64 bit architecture and linked in the negative address range (with another terminology, higher half address space). The reference implementations support **EM_X86_64** (62), **EM_AARCH64** (183) or **EM_RISCV** (243) in ELF, and **IMAGE_FILE_MACHINE_AMD64** (0x8664), **IMAGE_FILE_MACHINE_ARM64** (0xAA64) or **IMAGE_FILE_MACHINE_RISCV64** (0x5064) in PE. The **x86_64** architecture is used by the BIOS / Multiboot / El Torito, UEFI and Coreboot loaders, while **AArch64** is supported on the Raspberry Pi 3 and 4.

Protocol Levels

Now where the kernel is mapped depends on the loader’s protocol level. Some reference implementation use level 1, **PROTOCOL_STATIC**. Most uses level 2, **PROTOCOL_DYNAMIC** (see below). Level 0, **PROTOCOL_MINIMAL** is used for embedded systems where environment is not implemented, all values and addresses are hardcoded and the frame buffer may not exists at all.

Static

A loader that implements protocol level 1, maps the kernel and the other parts at static locations in accordance with the linker (see chapter “Machine State” for the exact addresses). In the specification hereafter, the static protocol’s addresses will be used for simplicity. For forward compatibility, all BOOTBOOT compatible kernels must provide symbols required by level 2.

Dynamic

A level 2 dynamic loader on the other hand generates memory mapping according what’s specified in the kernel’s symbol table. It only differs from level 1 that the addresses are flexible (but still limited to the negative address range -1G to 0, and the addresses must be page aligned):

- Kernel will be mapped at executable header’s *Elf64_Ehdr.p_vaddr* or *pe_hdr.code_base* field.
- The bootboot structure will be mapped at the address of *bootboot* symbol.
- The environment string will be mapped at the address of *environment* symbol.
- The linear frame buffer will be mapped at the address of *fb* symbol.
- The MMIO area will be mapped at address of *mmio* symbol.

Entry Point

When BOOTBOOT compliant loader finished with booting, it will hand over the control to the kernel at the address specified in *Elf64_Ehdr.e_entry* or *pe_hdr.entry_point*.
Environment

If the boot partition has a FAT file system, the environment configuration is loaded from

BOOTBOOT\CONFIG

If the initial ramdisk occupies the whole boot partition, then file system drivers are used to locate

sys/config

If the latter is not appropriate for the operating system, the name of the file can be altered in bootboot source. The size of the environment is limited to the size of one page frame (4096 bytes).

Configuration is passed to your kernel as newline (‘\n’ or 0xA) separated, zero terminated UTF-8 string with "key=value" pairs. C style single line and multi line comments are allowed. BOOTBOOT Protocol only specifies two of the keys, screen and kernel, all the others and their values are up to the operating system’s kernel (or device drivers) to parse. Example:

 // BOOTBOOT Options
 /* --- Loader specific --- */
 // requested screen dimension. If not given, autodetected
 screen=800x600
 // elf or pe binary to load inside initrd
 kernel=sys/core
 /* --- Kernel specific, you're choosing --- */
 anythingyouwant=somevalue
 otherstuff=enabled
 somestuff=100
 someaddress=0xA0000

The screen parameter defaults to the display’s natural size or 1024x768 if that cannot be detected. The minimum value is 640x480.

The kernel parameter defaults to sys/core as the kernel executable’s filename inside the initial ramdisk image. If that does not fit for an operating system, it can be specified in this environment file or can be modified in the bootboot source.

Temporary variables will be appended at the end (from UEFI command line). If multiple instance of a key exists, the latter takes preference over the former (with other words, only the last occurrence counts).

To modify the environment when having booting issues, one will need to insert the disk into another machine (or boot a simple OS like DOS) and edit BOOTBOOT\CONFIG on the boot partition with a
text editor. With UEFI, you can use the edit command provided by the EFI Shell or append "key=value" pairs on the command line (keys specified on command line take precedence over the ones in the file).

The environment is mapped before the kernel image in memory, at address specified by the linker. In kernel, it can be accessed with

```c
extern unsigned char environment[4096];
```

The bootboot Structure

The bootboot struct is specified in bootboot.h, available at

https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h

It is the main information structure passed to the kernel by the loader. It is written with a define guard and extern “C” wrapper, so it can be safely used from a C++ kernel too.

The structure consist of a fixed 128 bytes header, followed by a variable sized memory map, where each entry is 16 bytes long. The first 64 bytes of the header are common across platforms, the second 64 bytes are platform specific, and usually holds system resource pointers.

Header Fields

Platform Independent

```c
uint8_t    magic[4];    // 0x00-0x03

uint32_t   size;        // 0x04-0x07

uint8_t    protocol;    // 0x08
```

The magic bytes \textit{BOOTBOOT MAGIC}, “BOOT”.

The size of the bootboot struct. That is 128 bytes at least, plus the memory descriptors’ size.

This informational field encodes BOOTBOOT Protocol level in bits 0 – 1 (as implemented by the loader which constructed the struct). Either \textit{PROTOCOL_STATIC} (1) or \textit{PROTOCOL_DYNAMIC} (2). If bit 7 (the sign bit) is set, then the structure has big-endian values, \textit{PROTOCOL_BIGENDIAN} (0x80). Bits 2 – 6 encode another informational field for the kernel, either \textit{LOADER_BIOS} (0), \textit{LOADER_UEFI} (1), \textit{LOADER_RPI} (2) or \textit{LOADER_COREBOOT}(3) for now. New values will be defined by future versions of this documentation.
The frame buffer format, FB_{ARGB} (0) to FB_{BGRA} (3). The most common is FB_{ARGB}, where
the least significant byte is blue, and the most significant one is skipped (as alpha channel is not used on
lfb) in little-endian order.

The number of CPU cores. On Symmetric Multi Processing platforms this can be larger than 1.

The BootStrap Processor ID on platforms that support SMP (Local APIC ID on x86_64).

The machine’s detected timezone if such a thing supported on the platform. Stored as an integer in
minutes, from -1440 to 1440, and does not affect the $datetime$ field (which is always in UTC).

The UTC date of boot in binary coded decimal on platforms that have RTC chip. The first two bytes in
hexadecimal gives the year, for example 0x20 0x17, then one byte the month 0x12, one byte the day
0x31. Followed by hours 0x23, minutes 0x59 and seconds 0x59 bytes. The last byte can store 1/100th
second precision, but in lack of support on most platforms, it is 0x00. Not influenced by the $timezone$
field.

The physical address and size of the initial ramdisk in memory (mapped in the positive address range).

Frame buffer physical address and size in bytes. Do not confuse with linker specified fb virtual address.

The frame buffer resolution and bytes per line as stored in memory (see chapter “Linear Frame Buffer”
for details).
Platform Dependent Pointers

The second 64 bytes of the header are architecture specific. Only used on x86_64 architecture:

```c
uint64_t x86_64.acpi_ptr;  // 0x40-0x7F
uint64_t x86_64.smbi_ptr;
uint64_t x86_64.efi_ptr;
uint64_t x86_64.mp_ptr;
uint64_t x86_64.unused0;
uint64_t x86_64.unused1;
uint64_t x86_64.unused2;
uint64_t x86_64.unused3;
```

Only on AArch64. The `mmio_ptr` holds the physical address of the BCM2837 MMIO (also mapped in kernel space at `mmio`):

```c
uint64_t aarch64.acpi_ptr;  // 0x40-0x7F
uint64_t aarch64.mmio_ptr;
uint64_t aarch64.efi_ptr;
uint64_t aarch64.unused0;
uint64_t aarch64.unused1;
uint64_t aarch64.unused2;
uint64_t aarch64.unused3;
```

Memory Map Entries

```
MMapEnt    mmap;       // 0x80-0xFFF
```

A platform independent, sorted by address memory map. If a kernel does not want to check the upper bound for this list, the number of entries can be calculated with

```
num_mmap_entries = (bootboot.size – 128) / 16;
```

The memory entry information can be extracted with the following C macros:

- `MMapEnt_Ptr(a)` = the pointer of the memory area
- `MMapEnt_Size(a)` = the size of the memory area in bytes
- `MMapEnt_Type(a)` = the type of the memory area in range of 0 – 15
- `MMapEnt_IsFree(a)` = returns true if the memory area can be used by the OS.

The type returns one of `MMAP_USED` (0), `MMAP_FREE` (1), `MMAP_ACPI` (2), `MMAP_MMIO` (3, memory mapped IO area). Any other value is considered to be `MMAP_USED`. The bootboot struct is mapped before the kernel image in memory, at address specified by the linker. In the kernel, that struct can be accessed with

```
extern BOOTBOOT bootboot;
```
Linear Frame Buffer

The frame buffer is initialized in 32 bit packed pixel format, preferably in ARGB mode. It’s resolution will be the display’s native resolution or 1024x768 if that can’t be detected. The requested screen resolution can be passed in environment with the `screen=WIDTHxHEIGHT` paramter. If the ARGB mode is not supported, `bootboot.fb_type` tells the ordering of color channels.

The frame buffer is mapped along with other MMIO areas before the kernel in memory, at address specified by the linker. In the kernel, the buffer can be accessed with

```
extern uint8_t fb;
uint32_t *pixel = (uint32_t*)(&fb + offset);
```

Screen coordinates (X, Y) should be converted to offset as:

```
offset = (bootboot.fb_height – 1 – Y) * bootboot.fb_scanline + 4 * X.
```

Although `bootboot.fb_size` is a 32 bit value, level 1 loaders with static `fb` address limit the frame buffer’s size somewhere around 4096 x 4096 pixels (depends on bytes per line and aspect ratio too). That's more than enough for an Ultra HD 4K (3840 x 2160) resolution. Level 2 loaders will map the frame buffer where the kernel’s `fb` symbol tell to, therefore they don’t have such limitation.

Machine State

When the kernel gains control, a serial debug console is initialized, hardware interrupts are masked and code is running in supervisor mode. The floating point co-processor (FPU) and SIMD instructions must be enabled with a reasonable extension level (SSEx, Neon). SMP initialized, all cores running (see Appendix). The virtual memory is enabled as the MMU is turned on, and memory layout goes as follows:

The RAM (up to 16G) is identity mapped in the positive address range (user space memory or lower half). Negative addresses belong to the kernel, and should not be accessible from unprivileged mode (higher half).

The uncompressed initial ramdisk is entirely in the identity mapped area, and can be located using bootboot struct's `initrd_ptr` and `initrd_size` members.

The screen is properly set up with a 32 bit linear frame buffer, mapped at the negative address defined by the `fb` symbol at `-64M` or `0xFFFFFFFF_FC000000` (along with the other MMIO areas at `-128M` or `0xFFFFFFFF_F8000000` if they exists on the architecture, with physical address in the `mmio_ptr` field). The physical address of the frame buffer can be found in the `fb_ptr` field.

The main information bootboot structure is mapped at bootboot symbol, at `-2M` or `0xFFFFFFFF_FFE00000`.

BOOTBOOT Protocol Specification

The environment configuration string (or command line if you like) is mapped at environment symbol, at -2M + 1 page or 0xFFFFFFFF_FFE01000.

Kernel's combined code and data segment is mapped at -2M + 2 pages or 0xFFFFFFFF_FFE02000. After that segment, at a linker defined address, comes the bss data segment, zerod out by the loader. Level 1 protocol limits the kernel's size in 2M, including info, code, data, bss and stack. That should be more than enough for any micro-kernels. Level 2 has a limit of 16M for code, data and bss. If a kernel wants to separate it's code on a read-only segment and data on a non-executable segment for security, it can override the page translation tables as soon as it gains control. BOOTBOOT Protocol does only handle one loadable segment for simplicity (called boot in the example linker script, see Appendix).

The kernel stack is at the top of the memory, starting at zero and growing downwards. The first page(s) are mapped by the loader, other pages have to be mapped by the kernel if needed. Each core’s stack starts at a different address and has 1k length if SMP supported. Level 2 loaders can set the size of the stack with the initstack symbol.

Using memory mapped regions at linker specified addresses is simple enough (no API required and ABI doesn’t matter) and provides a platform independent way of passing information to the kernel.

![Figure: memory layout on kernel hand over (not to scale). Dark gray areas are not mapped.](image)
Reference Implementations

The second part of this documentation describes the reference implementations. This serves as a user manual and also as a library reference for used firmware functions.

All implementations are freely available for download at

https://gitlab.com/bztsrc/bootboot

- **x86_64-bios**: IBM PC BIOS / Multiboot / El Torito / Linux boot implementation
- **x86_64-uefi**: IBM PC UEFI implementation
- **x86_64-cb**: coreboot payload implementation
- **aarch64-rpi**: Raspberry Pi 3 / 4 implementation
- **mykernel**: a sample BOOTBOOT compatible kernel for testing
- **mkbootimg**: an all-in-one, dependency-free bootable disk and partition creation tool

Figure: The sample kernel’s screen for reference
IBM PC BIOS / Multiboot / El Torito / Linux boot

Initial Ramdisk
Supported as BIOS Expansion ROM (up to ~96k). Not much space, but can be compressed. From disk the initial ramdisk is loaded with the BIOS INT 13h / AH=42h function.

Memory Map
The memory map is queried with BIOS INT 15h / AX=0E820h function.

Linear Frame Buffer
Frame buffer initialization is done with VESA 2.0 VBE, INT 10h / AH=4Fh functions.

Machine State
The A20 gate is enabled, serial debug console COM1 is initialized with INT 14h / AX=0401h function to 115200,8N1. Boot datetime are queried with INT 1Ah. IRQs masked. GDT unspecified, but valid, IDT unset. SSE enabled, SMP initialized. Code is running in supervisor mode in ring 0 for all cores.

Limitations
- As it boots in protected mode, it only maps 4G of RAM, that’s passed to the 64 bit kernel
- The CMOS nvram does not store timezone, so always GMT+0 returned in bootboot.timezone.
- Does not support AES-256-CBC encrypted initrds, only SHA-XOR-CBC.

Booting
- **BIOS disk / cdrom**: copy `bootboot.bin` to `FS0:\BOOTBOOT.BIN`. You can also place it totally outside of any partition (with `dd conv=notrunc seek=x`). Also install `boot.bin` in the El Torito CDROM boot catalog, Master Boot Record (or in Volume Boot Record if you have a boot manager), saving bootboot.bin's first sector in a dword at 0x1B0. The `mkboot` utility will save that for you, see (https://gitlab.com/bztsrc/bootboot/blob/master/x86_64-bios/mkboot.c).
- **BIOS ROM**: install `bootboot.bin` in a **BIOS Expansion ROM**.
- **GRUB**: specify `bootboot.bin` as a Multiboot "kernel" in grub.cfg, or you can also chainload `boot.bin`. Both initrd and environment can be loaded as modules too (see Appendix).
IBM PC UEFI

On UEFI machines (http://www.uefi.org/), the operating system is loaded by a standard EFI OS loader application.

Initial Ramdisk

Supported in ROM (up to 16M) as a PCI Option ROM. It is located with the EFI_PCI_OPTION_ROM_TABLE protocol and (with “-s”) direct probing for magic bytes in memory.

From disk the initial ramdisk is loaded with the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or BLOCK_IO_PROTOCOL when GPT is directly parsed. This implementation supports both SHA-XOR_CBC and AES-256-CBC encrypted initrds.

Memory Map

The memory map is queried with EFI_GET_MEMORY_MAP boot time service.

Linear Frame Buffer

Frame buffer is set up using the EFI_GRAPHICS_OUTPUT_PROTOCOL (GOP in short).

Machine State

Debug console is implemented with SIMPLE_TEXT_OUTPUT_INTERFACE which can be redirected to serial. Boot date and time are queried with EFI_GET_TIME. IRQs masked. GDT unspecified, but valid, IDT unset. SSE enabled, SMP initialized with native trampoline code (optionally with EFI_MP_SERVICES_PROTOCOL). Code is running in supervisor mode in ring 0 for all cores.

Limitations

- The PCI Option ROMs should be signed in order to work.

Booting

- **UEFI disk**: copy bootboot.efi to `FS0:\EFI\BOOT\BOOTX64.EFI`.
- **UEFI ROM**: use bootboot.rom which is a *PCI Option ROM* image of bootboot.efi.
- **GRUB, UEFI Boot Manager**: add *bootboot.efi* to boot options.
Coreboot payload

The protocol is also supported as a https://coreboot.org payload. This means it is implemented in the “BIOS”.

Initial Ramdisk

The ramdisk can be placed on a Flashmap partition, or added to the COREBOOT partition using

```
$ cbfstool coreboot.rom add -t raw -f initrd.tgz -n bootboot/initrd
```

Otherwise it can be loaded through serial line, or from a GPT partitioned disk, using libpayload’s storage (ATA, ATAPI, SATA, AHCI), USB disk interfaces and a fallback IDE ATA driver. If libpayload is compiled with LZMA (xz) or LZ4 compression, then in addition to gzip deflate those are supported too.

Memory Map

Queried with libpayload’s lib_sysinfo memranges.

Linear Frame Buffer

Not set explicitly, coreboot is expected to be configured for a proper linear frame buffer.

Machine State

Debug console is implemented with libpayload’s console which is by default redirected to serial. Boot date and time are queried with rtc_read_clock(). IRQs masked. GDT unspecified, but valid, IDT unset. SSE enabled, SMP initialized. Code is running in supervisor mode in ring 0 for all cores.

Limitations

- The CMOS nvram does not store timezone, so always GMT+0 returned in bootboot.timezone.
- Coreboot does not provide a way to set screen resolution, so "screen=" config option is not used.
- Does not support AES-256-CBC encrypted initrds, only SHA-XOR-CBC.

Bootimg

- In emulator, `qemu-system-x86_64 -bios coreboot.rom`.
- Otherwise flash `coreboot.rom` to your motherboard’s chip.
Raspberry Pi 3 / 4

On Raspberry Pi (https://www.raspberrypi.org/) board the bootboot.img is loaded from the boot partition on SD card as kernel8.img by start.elf.

Initial Ramdisk

No ROM support on the platform, but initrd can be loaded over serial. Ramdisk is loaded by an EMMC SDHC driver implemented in bootboot. Gzip compression is not recommended as it’s slow.

Memory Map

The memory map is handcrafted with information obtained from VideoCore MailBox’s properties channel. In addition to standard mappings, the BCM2837 MMIO is also mapped in kernel space before the frame buffer at -128M or 0xFFFFFFFF_F8000000. The physical address can be acquired from bootboot.aarch64.mmio_ptr field of the information structure, detected by using MIDR_EL1.

Linear Frame Buffer

Frame buffer is set up with VideoCore MailBox messages.

Machine State

Serial debug console is implemented on UART0 (PL011), with 115200,8N1 and USB debug cable on GPIO pins 14 / 15 connected to a PC. Co-processor enabled, code is running in supervisor mode, at EL1 for all cores.

Limitations

- Maps 1G of RAM, because most Raspberry Pi boards don’t have more
- Does not have an on-board RTC chip, so bootboot.datetime is set to 0000-00-00 00:00:00.
- SD cards other than SDHC Class 10 are not tested
- Does not support AES-256-CBC encrypted initrds, only SHA-XOR-CBC.

Booting

- **SD card**: copy *bootboot.img* to *FS0:KERNEL8.IMG*. You’ll need other firmware files (bootcode.bin, start.elf) as well. The GPT is not supported directly, therefore ESP partition has to be mapped in MBR so that Raspberry Pi firmware could find those files. The *mkboot* utility (https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/mkboot.c) will do that for you.
- **Serial**: copy *bootboot.img* to *FS0:KERNEL8.IMG*, but do not create the BOOTBOOT directory.
The mkbootimg Disk Image Creator Tool

This is a simple, dependency-free image creator that is written in ANSI C. It can create FAT partitions, GPT disk images and hybrid ISO9660 (CDROM/DVD) images.

Creating an initrd ROM image

Assuming you have a valid configuration, you can convert that into a BIOS Option ROM with

```
./mkbootimg myos.json initrd.rom
```

Creating an ESP FAT partition

To save only the boot partition image, use

```
./mkbootimg myos.json bootpart.bin
```

Creating a hybrid GPT disk / ISO9660 CDROM/DVD image

Using any other file, or disk device filename will generate a full disk image with

```
./mkbootimg myos.json disk.img
```

Checking kernel for BOOTBOOT Protocol Level Compliance

As a bonus, this tool can also used to check a kernel executable.

```
./mkbootimg check ../mykernel/mykernel.x86_64.elf
```

Complies with BOOTBOOT Protocol Level 1 and 2, valid dynamic addresses
APPENDIX

Creating a GPT ESP partition

```bash
# fdisk /dev/sdc
Welcome to fdisk (util-linux 2.30.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0xfa00b86e.

Command (m for help): g
Created a new GPT disklabel (GUID: E6B4945A-8308-448B-9ACA-0E656854CF66).

Command (m for help): n p
Partition number (1-128, default 1): 1
First sector (2048-262110, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-262110, default 262110): +8M

Created a new partition 1 of type 'Linux filesystem' and of size 8 MiB.

Command (m for help): t 1
Selected partition 1
Partition type (type L to list all types): 1
Changed type of partition 'Linux filesystem' to 'EFI System'.

Command (m for help): w
The partition table has been altered.
Syncing disks.

# mkfs.vfat -F 16 -n "EFI System" /dev/sdc1
mkfs.fat 4.1 (2017-01-24)
mkfs.fat: warning - lowercase labels might not work properly with DOS or Windows

# mkboot /dev/sdc
mkboot: GPT ESP mapped to MBR successfully
```

A sample BOOTBOOT compatible kernel

```c
/*
 * mykernel/kernel.c
 *
 * Copyright (c) 2017 bzt (bztsrc@gitlab)
 *
 * This file is part of the BOOTBOOT Protocol package.
 * @brief A sample BOOTBOOT compatible kernel
 *
 */

/* function to display a string, see below */
void puts(char *s);

/* we don't assume stdint.h exists */
typedef short int      int16_t;
typedef unsigned char  uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int   uint32_t;
typedef unsigned long int uint64_t;
```
BOOBOOT Protocol APPENDIX

#include <bootboot.h>

/* imported virtual addresses, see linker script */
extern BOOBOOT bootboot; // see bootboot.h
extern unsigned char environment[4096]; // configuration, UTF-8 text key=value pairs
extern uint8_t fb; // linear framebuffer mapped

/**
* Entry point, called by BOOBOOT Loader *
**/

void _start()
{
 //*** NOTE: this code runs on all cores in parallel ***/
 int x, y, s=bootboot.fb_scanline, w=bootboot.fb_width, h=bootboot.fb_height;

 // cross-hair to see screen dimension detected correctly
 for(y=0;y<h; y++) { *((uint32_t*)(fb + s*y + (w*2)))=0x00FFFFFF; }
 for(x=0;x<w; x++) { *((uint32_t*)(fb + s*(h/2)+x*4))=0x00FFFFFF; }

 // red, green, blue boxes in order
 for(y=0;y<20; y++) { for(x=0;x<20; x++) { *((uint32_t*)(fb + s*(y+20) + (x+20)*4))=0x0000FF00; } }
 for(y=0;y<20; y++) { for(x=0;x<20; x++) { *((uint32_t*)(fb + s*(y+20) + (x+50)*4))=0x000000FF; } }
 for(y=0;y<20; y++) { for(x=0;x<20; x++) { *((uint32_t*)(fb + s*(y+20) + (x+80)*4))=0x00FFFFFF; } }

 // say hello
 puts("Hello from a simple BOOBOOT kernel");

 // hang for now
 while(1);
}

/**************************
* Display text on screen *
**************************/

typedef struct {
 uint32_t magic;
 uint32_t version;
 uint32_t headersize;
 uint32_t flags;
 uint32_t numGlyph;
 uint32_t bytesperGlyph;
 uint32_t height;
 uint32_t width;
 uint8_t glyphs;
} __attribute__((packed)) psf2_t;

extern volatile unsigned char _binary_font_psf_start;

void puts(char *s)
{
 psf2_t *font = (_binary_font_psf_start + font->headersize +
 (*s>0&&*s<font->numGlyph?*s:0)*font->bytesperGlyph);
 int offs = (kx * (font->width+1) * 4);
 for(y=0;y<font->height; y++) {
 for(x=0;x<font->width; x++) {
 (uint32_t)((uint64_t)&fb+offs) = (*font++) & (mask)?0xFFFFFF:0;
 }
 }
 offs+=bootboot.fb_scanline;
 s++; kx++;
}

26
A sample Makefile

```makefile
# mykernel/Makefile
#
# Copyright (c) 2017 bzt (bztsrc@gitlab)
#
# This file is part of the BOOTBOOT Protocol package.
# @brief An example Makefile for sample kernel
#
#
CFLAGS = -Wall -fpic -ffreestanding -fno-stack-protector -nostdinc -nostdlib -I../

all: mykernel.x86_64.elf mykernel.aarch64.elf

mykernel.x86_64.elf: kernel.c
    x86_64-elf-gcc $(CFLAGS) -mno-red-zone -c kernel.c -o kernel.o
    x86_64-elf-ld -r -b binary -o font.o font.psf
    x86_64-elf-ld -nostdlib -n -T link.ld kernel.o font.o -o mykernel.x86_64.elf
    x86_64-elf-strip -s -K mmio -K fb -K bootboot -K environment -K initstack mykernel.x86_64.elf

mykernel.aarch64.elf: kernel.c
    aarch64-elf-gcc $(CFLAGS) -c kernel.c -o kernel.o
    aarch64-elf-ld -r -b binary -o font.o font.psf
    aarch64-elf-ld -nostdlib -n -T link.ld kernel.o font.o -o mykernel.aarch64.elf
    aarch64-elf-strip -s -K mmio -K fb -K bootboot -K environment -K initstack mykernel.aarch64.elf

clean:
    rm *.o *.elf *.txt

A sample linker script

```c
/
/*
 * mykernel/link.ld
 *
 * Copyright (c) 2017 bzt (bztsrc@gitlab)
 *
 * This file is part of the BOOTBOOT Protocol package.
 * @brief An example linker script for sample kernel
 *
 */

mmio = 0xfffffffff8000000; /* these are configurable for level 2 loaders */
fb = 0xffffffffc0000000;
bootboot = 0xffffffffe000000;
environment = 0xfffffffff01000;
initstack = 1024;

PHDRS {
 boot PT_LOAD; /* one single loadable segment */
}

SECTIONS {
 . = 0xfffffffff002000;
 .text : {
 KEEP(*.text.boot) *(.text .text.*) /* code */
 (.rodata .rodata.) /* data */
 (.data .data.)
 } :boot
 .bss (NOLOAD) : { /* bss */
 .= ALIGN(16);
 (.bss .bss.)
 *(COMMON)
 } :boot
}
A sample Symmetric Multi Processing code

x86_64

```
_start:
    mov  $1, %eax
    cpuid
    shr  $24, %ebx
    cmpw %bx, bootboot + 0xC
    jne  .ap

/* things to do on bootstrap processor */
.ap:
/* things to do on application processors */
```

(* - APIC only supports cores up to 256. Use x2APIC for full compatibility, up to 65536 cores)

AArch64

```
_start:
mrs  x0, mpidr_el1
and  x0, x0, #3
cbnz x0, .ap  // BSP is always core 0

/* things to do on bootstrap processor */
.ap:
/* things to do on application processors */
```

A sample grub.cfg entry

```
menuentry "MyKernel" {
    multiboot /bootboot.bin         # the loader
    module /bootboot/initrd         # first module is the initrd (optional)
    module /bootboot/config         # second module is the environment file (optional)
    boot
}
```

A sample mkbootimg.json configuration file

```
{
    "diskguid": "00000000-0000-0000-0000-000000000000",
    "disksize": 128,
    "config": "boot-x86_64/sys/config",
    "initrd": [ { "type": "tar", "gzip": true, "directory": [ "boot-x86_64", "boot-AArch64" ] },
                { "type": "fat16", "size": 16 },
                { "type": "ext4", "size": 32, "name": "MyOS usr", "file": "usrpart.bin" },
                { "type": "ntfs", "size": 32, "name": "MyOS var", "file": "varpart.bin" }]
}
```

Loading emergency initrd over serial

If you want to boot the initial ramdisk over a serial cable, you’ll need `raspbootcom`, originally written by Goswin von Brederlow (https://github.com/mrvn/raspbootin) or use the ANSI C rewrite (https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c), or [USBImager](https://bztsrc.gitlab.io/usbimager) (which is GUI application for Windows, MacOSX and Linux) on host to send an initrd file over serial cable.

Protocol:

- **Client → Server**: 3 bytes, “\003\003\003” (three times Ctrl+C)
- **Server → Client**: 4 bytes, size of the image in little endian
- **Client → Server**: 2 bytes, “OK” or “SE” (Size Error)
- **Server → Client**: size bytes, image (only if response was “OK”)
Troubleshooting

BOOTBOOT-PANIC: no LBA support
Really old hardware. Your BIOS does not support LBA. This message is generated by 1st stage loader (boot.bin).

BOOTBOOT-PANIC: no FS0:\BOOTBOOT.BIN
The loader is not on the disk or it's starting LBA address is not recorded in the boot sector at dword [0x1B0] (see mkboot). As the boot sector supports RAID mirror, it will try to load the loader from other drives as well. This message is generated by 1st stage loader (boot.bin).

BOOTBOOT-PANIC: Hardware not supported
Really old hardware. On x86_64, your CPU is older than family 6.0 or PAE, MSR, LME features not supported. On AArch64 it means the MMU does not support 4k granule size or at least 36 bit address size.

BOOTBOOT-PANIC: Unable to initialize SDHC card
The loader was unable to initialize EMMC for SDHC card access, probably hardware error or old card.

BOOTBOOT-PANIC: No GPT found
The loader was unable to load the GUID Partitioning Table.

BOOTBOOT-PANIC: No boot partition
There's no EFI System Partition nor any other bootable partition in the GPT. Or the FAT file system is found but corrupt (contains inconsistent BPB data), or doesn't have a BOOTBOOT directory (with 8+3 MSDOS entry, not LFN).
BOOTBOOT-Protocol APPENDIX

BOOTBOOT-PANIC: Not 2048 sector aligned
This error is only shown by bootboot.bin (and not by bootboot.efi or bootboot.img) and only when booted from CDROM in El Torito "no emulation" mode, and the boot partition file system's root directory is not 2048 bytes aligned or the cluster size is not multiple of 2048 bytes. For FAT16 it depends on FAT table size and therefore on file system size. If you see this message, increase the number of hidden sectors in BPB by 2. FAT32 file systems are not affected.

BOOTBOOT-PANIC: Initrd not found
The loader could not find the initial ramdisk image on the boot partition.

BOOTBOOT-PANIC: Kernel not found in initrd
Kernel is not included in the initrd, or initrd's fileformat is not recognized by any of the file system drivers and scanning haven't found a valid executable header in it.

BOOTBOOT-PANIC: Kernel is not a valid executable
The file that was specified as kernel could be loaded by fs drivers, but it's not an ELF64 or PE32+, does not match the architecture, or does not have any program header with a loadable segment (p_vaddr or core_base) in the negative range (see linker script). This error is also shown by level 2 loaders if the address of mmio, fb, bootboot and environment symbols are not in the negative range (-1G to 0) or if they are not page aligned. On x86_64 the fb symbol, and for AArch64 the mmio symbol must be 2M aligned too. Use mkbootimg check to find out what the problem is.

BOOTBOOT-PANIC: Kernel is too big
The kernel is bigger than 16 megabytes. For level 1 loaders, the limit is somewhere below 2M.

BOOTBOOT-PANIC: GOP failed, no framebuffer
BOOTBOOT-PANIC: VESA VBE error, no framebuffer
BOOTBOOT-PANIC: VideoCore error, no framebuffer
The first part of the message varies on different platforms. It means that the loader was unable to set up linear framebuffer with packed 32 bit pixels in the requested resolution. Possible solution is to modify screen to screen=800x600 or screen=1024x768 in environment.
BOOTBOOT-panic: Unsupported cipher

This message is shown if the initrd is encrypted with a cipher that the loader does not support. Solution: regenerate and encrypt the initrd image with SHA-XOR-CBC cipher, known to all implementations. (Note: encryption is only supported for FS/Z initrd images.)