
SoFiA 2 User Manual
v2.5.1

Tobias Westmeier

September 5, 2023

SoFiA
Source Finding Application

SFA 2 User Manual Contents

Contents

1 Introduction 4
1.1 Installation . 4

1.1.1 Standard installation procedure . 4
1.1.2 Container formats . 6

1.2 Parameter files . 6
1.3 Running the pipeline . 6

2 Input data sets 8
2.1 Data cube . 8
2.2 Mask cube . 8
2.3 Noise cube . 8
2.4 Weights cube . 9
2.5 Gain cube . 9

3 Preconditioning 10
3.1 Data flagging . 10
3.2 Continuum subtraction . 10
3.3 Noise normalisation . 11
3.4 Ripple filter . 11

4 Source finding 13
4.1 The S +C finder . 13

5 Linking of detected pixels 15

6 Reliability calculation 16
6.1 Algorithm . 16
6.2 Parameter space . 16
6.3 SNR and pixel thresholds . 18
6.4 Kernel size optimisation . 18
6.5 Dealing with artefacts . 19

7 Mask dilation 20

8 Source parameterisation 21
8.1 Source position . 21
8.2 Flux density . 22
8.3 Flux . 22
8.4 Line widths . 23
8.5 Ellipse fitting . 24
8.6 Kinematic major axis . 24

9 Output products 27
9.1 Source catalogue . 27
9.2 Image products . 27
9.3 Cubelets . 28
9.4 Diagnostic output . 29

2

Contents SFA 2 User Manual

10 Tips and tris 30
10.1 Example parameter file . 30
10.2 2D images . 31
10.3 Absorption lines . 31
10.4 Extracting a sub-cube . 31
10.5 Source catalogue in Python . 32

A Control parameters 33
A.1 General . 33
A.2 Input . 33
A.3 Preconditioning . 35
A.4 Source Finding . 38
A.5 Linking . 40
A.6 Reliability . 41
A.7 Mask Dilation . 43
A.8 Parameterisation . 44
A.9 Output . 45

B File and directory structure 48

C Return codes 49

References 49

Index 50

3

SFA 2 User Manual Introduction

Introduction

With the new generation of large-scale, blind H I surveys to be carried out on the next generation of
centimetre-wave radio telescopes, including ASKAP, MeerKAT,WSRT/Apertif and FAST, fully automated,
accurate and reliable source finding is of fundamental importance to the scientific success of these surveys.
The Source Finding Application, SoFiA (Serra et al. 2015), was designed to meet the source finding needs
of the H I community and has become the de-facto standard source finding tool for spectral-line data.

While SoFiA introduced a large number of novel algorithms that have revolutionised H I source find-
ing, there are a few issues that affect its applicability to large data volumes and its long-term maintain-
ability:

• Large parts of SoFiA are written in Python, resulting in needlessly large execution times and mem-
ory consumption in addition to imposing a range of restrictions.

• SoFiA depends on a large number of third-party libraries which tend to break the code due to the
lack of compatibility between different library versions.

• Different parts of SoFiA are written in different programming languages, including Python, C++
and Cython, making the software difficult to maintain.

In order to address these problems, most notably the speed and memory issues, the SoFiA team decided to
reimplement the most critical and powerful components of the software in the C programming language.
This new version has been named SoFiA 2 (Westmeier et al. 2021) and, like its predecessor, has been made
available on GitLab.1

Installation

Standard installation procedure

Installation of the SoFiA 2 source code from GitLab is straightforward, as there is currently only a single
dependency, clib,2 which is required for converting between pixel-based and world coordinates. In ad-
dition, the GNU C compiler (gcc) must be available, although other gcc-compatible compilers supporting
the C99 standard, including clang, might work as well. SoFiA 2 can then simply be compiled by execut-
ing the compile.sh shell script in the base directory. This will compile the source code and generate an
executable file named sofia. Multi-threading support can be enabled by adding the -fopenmp flag to the
compile.sh script call.3

It is important to ensure that no error messages are produced by the compiler during the compilation
process, as otherwise SoFiA 2 will not have been compiled correctly and may not run. In addition, the
instructions shown at the end of the installation process should be followed to set a global alias or symbolic
link to the sofia executable.

SoFiA 2 makes extensive use of multi-threading using OpenMP. As OpenMP support is natively built
into the GCC compiler, no additional libraries or dependencies are needed, and multi-threading is enabled
by default. If not otherwise specified, SoFiA 2 will use the environment variable OMP_NUM_THREADS to
control the number of threads used by OpenMP. If unset, this will normally default to using all CPU cores
available on a machine, thereby minimising the runtime of the pipeline. The maximum number of cores
utilised by SoFiA 2 can be explicitly set using the pipeline.threads option. This may be desirable in
certain situations to reduce the CPU load caused by SoFiA 2. With a code parallelisation fraction of just
over 80%, the use of about 8 cores is optimal, with no significant gains expected beyond that.

1SoFiA 2 on GitLab: https://gitlab.com/SoFiA-Admin/SoFiA-2/.
2clib on Mark Calabretta’s website: https://www.atnf.csiro.au/people/mcalabre/WCS/.
3The -fopenmp flag is used by gcc. Other compilers may use a different flag for enabling OpenMP; please see your compiler

documentation for more information.

4

https://gitlab.com/SoFiA-Admin/SoFiA-2/
https://gitlab.com/SoFiA-Admin/SoFiA-2/
https://www.atnf.csiro.au/people/mcalabre/WCS/

Introduction SFA 2 User Manual

Flagging

Noise normalisation

Auto-flagging

Threshold finderS + C finder

Linking

Reliability filter

Reload data

Parameterisation

Parameter file

Data cube

Noise cube

Gain cube

Data cube

Filtered cube

Reliability plot

Catalogues Moment maps Mask cubes Cubelets

Noise cube

Flagging log

Mask cube

Weights cube

Raw mask cube

Mask dilation

Weights correction

Spatial
averaging filter

Continuum
subtraction

Figure 1: Flowchart of SoFiA 2 showing the individual steps in the pipeline (yellow), the input data cubes accepted
by SoFiA 2 (blue) and the different output files that can be generated (purple).

5

SFA 2 User Manual Introduction

Container formats

In addition to the standard installation procedure from source code, all stable releases of SoFiA 2 are also
supplied in the form of Doer containers. These are available for download from Docker Hub.4 Due to
the significant overhead imposed by the containerisation process, it is strongly advisable to install SoFiA 2
from source code by default, which is generally easier and will occupy significantly less disc space. Docker
containers should only be used in special circumstances where installation from source is not possible
or a container format is preferred for some other reason. As Docker images are natively supported by
Singularity, the official SoFiA 2 Docker images can also be run in Singularity. Further information is
available from the Singularity website.

Parameter files
SoFiA 2 is controlled through so-called parameter files that are used to select or deselect the different
algorithms offered by SoFiA 2 and control their individual settings. As such, parameter files are simple
text files made up of one or more parameter settings each of which must be on a separate line. Each
parameter setting must be of the following form:

module.parameter = value

An arbitrary number of whitespace characters is allowed around the assignment operator (=) and at the
beginning or end of each line; these will be ignored by the parser. Empty lines and any character sequence
starting with a hash character (#) will also be ignored and be treated as a comment. A complete list of con-
trol parameters accepted by SoFiA 2 can be found in Appendix A. As unset parameters will automatically
assume their default values, users may opt to specify only a subset of relevant settings in their parameter
files, most notably the name of the input data set.

A basic example parameter file for a standard source finding run on a 3D extragalactic H I data cube
is presented in Section 10.1.

Running the pipeline
Once a parameter file has been created and saved, the pipeline can be launched from the terminal by
running the following command:

sofia <parameter_file>

where <parameter_file> is the name of the SoFiA 2 parameter file. If the parameter file has been saved
to the current directory, it will be sufficient to provide just its name, otherwise the full path will need to
be included. A flowchart of the SoFiA 2 pipeline is presented in Fig. 1.

Note that it is not necessary to define all existing parameters in the user parameter file. Any parameters
not defined will simply assume their default value. It is therefore usually sufficient to set only a few
parameters that need to be adjusted, such as the name of the input data cube. It is also possible to specify
individual settings on the command line in the following way:

sofia <parameter_file> <parameter>=<value>

which will first read the user parameter file and then update the specified parameter setting. Note that
there must be no space in between <parameter> and <value> when specifying parameter settings di-
rectly on the command line. Any number of parameter files and/or individual settings can be passed on to
SoFiA 2 on the command line in any order. All files and direct settings will simply be read and processed
in the order in which they are provided, with later settings overwriting earlier ones. This could for ex-
ample be used to define default parameter settings in a separate file while specifying the input data cube
name on the command line, e.g.

4SoFiA 2 Docker images: https://hub.docker.com/r/sofiapipeline/sofia2/.

6

https://sylabs.io/guides/latest/user-guide/singularity_and_docker.html
https://hub.docker.com/r/sofiapipeline/sofia2/

Introduction SFA 2 User Manual

sofia default.par input.data=data.fits output.filename=test

would first read the parameter file default.par and then replace the input and output file names with
data.fits and test, respectively. If a parameter setting supplied on the command line contains special
terminal control characters or whitespace, then the setting must be enclosed in quotation marks, e.g.
input.data="sam's galaxy.fits".

7

SFA 2 User Manual Input data sets

Input data sets

SoFiA 2 accepts several kinds of input files, including the data cube to be searched. Currently, only the
Flexible Image Transport System (FITS) format (Pence et al. 2010) is supported by SoFiA 2, and all input
and output imaging data files must be standard FITS files.

Data cube

Data cubes are generally expected to be three-dimensional, with the first two axes containing the spatial
coordinates (either equatorial or Galactic coordinates) and the third axis containing the spectral coordi-
nates (either frequency or velocity). SoFiA 2 can also process two-dimensional images (e.g. radio contin-
uum images), in which case the third axis is assumed to have a size of 1. Four-dimensional cubes will also
be accepted as long as the fourth axis has a size of exactly 1. The fourth axis (e.g. Stokes I) will simply be
dropped in this case to obtain a three-dimensional data structure.5

It is possible to process only a subregion of the full data cube with SoFiA 2. This can be useful if the
full cube is too large to fit into memory, or if parts of the cube contain artefacts. The input.region
option can be used in this case to specify a subregion in pixel coordinates (0-based), and only the specified
region will then be read into memory and processed. It is important to note that all output, such as source
centroids in the output catalogue, will be specified with respect to the subregion rather than the full cube
unless parameter.offset is set to true.

To ease the processing of data cubes with negative signals, such as H I absorption lines, SoFiA 2
offers the possibility of inverting the data cube prior to processing. This can be controlled with the
input.invert option. It should be noted that enabling this option will simply multiply the data cube by
−1 such that positive signals become negative and vice versa. Hence, all flux-related output, such as the
flux measurement or 0th moment, will be inverted as well in this case and be reported as positive.

Mask cube

In addition to the input data cube, an input mask cube can be loaded into SoFiA 2. Mask cubes must have
the same dimension as the input data cube and are used to mark with a non-zero value all pixels that
are considered to be part of a source. SoFiA 2 will normally generate a fresh mask cube during source
finding. However, the input.mask option can be used to load an existing mask cube instead, e.g. from a
previous run of SoFiA 2. Any additional pixels detected by the source finder will then simply be added to
the existing mask.

A useful application for supplying a mask cube would be to use SoFiA 2 simply as a parameteriser
rather than a source finding pipeline. In this case the source finder can be disabled, but the linker must
remain switched on, as otherwise SoFiA 2 would have no information on how many source there are
within the mask and where they are located.

Noise cube

Using the input.noise option, a noise cube can be provided to SoFiA 2 for the purpose of normalising the
noise level across the data cube in situations where the noise varies either spatially or spectrally. SoFiA 2
will divide the data cube by the noise cube prior to source finding. A typical use case would be to enable
local noise normalisation in SoFiA 2 (see Section 3.3) and write out the resulting noise cube. That noise
cube can then be loaded in subsequent runs of SoFiA 2, alleviating the need to run the computationally
expensive noise normalisation algorithm over and over again. Note that source parameterisation will be

5Currently, four-dimensional cubes where the third axis has a size of 1 while the fourth axis is larger than 1 are also supported;
in this case, SoFiA 2 assumes that the fourth axis contains the spectral information, and the header elements for the third and fourth
axis are simply swapped. This ‘feature’ may get removed in future releases.

8

Input data sets SFA 2 User Manual

carried out on the data cube without noise normalisation to ensure that the measured flux densities are
correct.

Weights cube
Using the input.weights option, a weights cube can be provided. SoFiA 2 will multiply the data cube
by the square root of the weights cube prior to source finding. Note that source parameterisation will
be carried out on the data cube without application of the weights cube to ensure that the measured flux
densities are correct. It is possible to load and apply both a weights cube and a noise cube, but SoFiA 2
will issue a warning in this case.

Gain cube
Some data cubes, such as radio-interferometric mosaics, may be affected by spatial or spectral gain varia-
tions. If uncorrected, these would result in parameterisation errors, in particular with respect to flux-based
parameters. SoFiA 2 allows the user to specify a gain cube that can be used to correct for gain variations
prior to source parameterisation. For this purpose, the input data cube will be divided by the gain cube to
normalise the gain to 1 across the entire cube. Unlike noise variations, gain variations do not necessarily
affect source finding as such, and the gain cube will therefore only be applied after source finding and
before parameterisation.

9

SFA 2 User Manual Preconditioning

Preconditioning

Before a source finding algorithm can be applied to a data cube, it may be necessary to subject the cube to
a range of preconditioning steps, e.g. to remove artefacts that would otherwise be picked up by the source
finder, or to ensure that the noise level across the data cube is constant prior to applying a source finding
threshold. SoFiA 2 currently provides several precondition options that are outlined in this section.

Data flagging
Data affected by interference or artefacts may need to be flagged prior to source finding. SoFiA 2 currently
provides three methods of flagging affected regions of the data cube. If the location of the interference
or artefacts is known, the flag.region option can be used to provide SoFiA 2 with a list of spatial and
spectral regions that need to be flagged. These need to be specified in units of pixels (0-based). The relevant
flagging will then be applied once the data cube has been loaded. It is important to note that, if applicable,
flagging regions are expected to be specified relative to the subregion being processed, not the full data
cube.

Another manual flagging option offered by SoFiA 2 allows the user to provide a catalogue file using
the flag.catalog option. The file must contain two columns with the coordinates of sky positions in the
native coordinate system and units of the input data cube (e.g. right ascension and declination in decimal
degrees). Columns can be separated by spaces, tabulators or commas, and entire lines can be commented
out using the # character. A circular region around each position, if located within the area covered by
the data cube, will then be flagged prior to source finding. The radius of the circular flagging region can
be controlled with the flag.radius option. The catalogue-based flagging option is useful for masking
the locations of residual continuum sources which can result from inadequate continuum subtraction.

In addition to manual flagging, SoFiA 2 also offers an automatic flagging mode for spectral channels
and/or spatial pixels affected by interference. This mode can be controlled using the flag.auto option.
The automatic flagging algorithm works by first measuring the RMS noise level, σrms(i), in each spectral
channel or spatial pixel, i. It then calculates the median, µ, of the RMS values and the median absolute de-
viation, µ̃, from the median, which are used as proxies for the mean noise level and the standard deviation
about that noise level, respectively. Lastly, a user-specified threshold, ϑ, is applied (flag.threshold)
such that all channels or pixels, i, where

|σrms(i)− µ| > Cϑµ̃ (1)

will be flagged. A constant of C ≈ 1.4826 is used in Eq. 1 to convert the median absolute deviation into a
regular standard deviation under the assumption that the underlying scatter in the RMS values follows a
Gaussian distribution. Flagged channels and pixels can be written to a log file by enabling the flag.log
option.

Care should be taken to ensure that the data cube does not contain regions of extended emission (e.g.
from the Milky Way) as channels or pixels with extended emission would potentially be flagged by the
algorithm. Likewise, if there is significant spatial or spectral variation of the noise across the data cube,
the noise normalisation filter (Section 3.3) must be enabled as well, as otherwise channels or pixels in
regions of intrinsically higher noise level would potentially get flagged.

Continuum subtraction
If the input data cube suffers from the presence of low-level residual continuum emission, then SoFiA 2
can help with its removal by switching on the contsub.enable option. SoFiA 2 will then use a robust
algorithm to fit a low-order polynomial to the spectrum at each spatial position of the cube and subtract
that polynomial from the data. The polynomial order can be controlled via the contsub.order parameter.
Currently, only order 0 (constant offset) and order 1 (offset + slope) are supported. It should be noted that
continuum subtraction will only occur prior to source finding, whereas source parameterisation will occur
on the original data cube without continuum subtraction.

10

Preconditioning SFA 2 User Manual

The algorithm will extract the spectrum at each spatial position in the data cube. It will then shift the
spectrum symmetrically by ±contsub.shift channels and subtract the spectrum shifted in one direc-
tion from the spectrum shifted in the opposite direction. Next, the noise in the subtracted spectrum will
be measured, and all channels in which the absolute value of the signal exceeds contsub.threshold
times the noise level will be flagged and excluded from the polynomial fitting. An additional padding
of ±contsub.padding channels around flagged channels can be applied as a safety margin. Finally, a
polynomial is fitted to the remaining channels of the original spectrum and subtracted from the original
data cube.

The polynomial fitting algorithm is fairly robust and should not normally be affected by spectral-line
emission or other artefacts irrespective of how bright they are. However, it is important to ensure that
a substantial fraction of the band is free from line emission and artefacts. As a general guideline, these
should not extend across more than about 20% of the total bandwidth, as otherwise the continuum fit will
start to be affected by their presence. Another problem could arise from emission near the edge of the
spectrum or very broad, smooth emission that might not be filtered out by the algorithm. In such cases,
increasing the values of contsub.shift and contsub.padding might help to improve the fit.

Noise normalisation

Another important preconditioning filter offered by SoFiA 2 is noise normalisation, which is required in
situations where the noise level varies across the data cube, either along the spectral axis or in the spatial
domain. As SoFiA 2 will be applying a source finding threshold to the data, it will be necessary in such
cases to first divide the data cube by the local noise level to remove any variation.

SoFiA 2 provides two methods for correcting noise variations. If the noise varies only as a function of
frequency, but not spatially, SoFiA 2 can measure and correct the noise on a channel-by-channel basis by
setting the option scaleNoise.mode = spectral. If the noise varies across the spatial plane as well,
e.g. in an interferometric mosaic, then local noise scaling can be enabled by setting scaleNoise.mode =
local.

Local noise scaling operates by shifting a runningwindow of a given size (scaleNoise.windowXY and
scaleNoise.windowZ) across all three dimensions of the data cube on a grid that can also be specified
by the user (scaleNoise.gridXY and scaleNoise.gridZ). If no grid size is specified, then SoFiA 2 will
use half the window size by default. It will then measure the RMS noise level in each window and divide
the data in the corresponding grid cell by the noise value. In addition, interpolation can be enabled (option
scaleNoise.interpolate) to linearly interpolate the noise values in between the grid centres, thereby
avoiding the sharp boundaries between grid cells that would otherwise occur.

The resulting noise measurement can be exported by setting output.writeNoise = true. In the
case of local noise scaling, a FITS cube with the suffix “_noise.fits” will be created that contains the
measured local noise level across the cube. If spectral noise scaling is enabled, then the measured noise
per channel will be written to a plain text file with the suffix “_noise.txt”.

Note that it is in principal also possible to achieve noise normalisation in each spectral channel using
the local noise scaling algorithm by simply setting the spectral window and grid size to 1 and the spatial
window and grid size to a very large number greater than the cube size, e.g. 99999. In this case the local
noise scaling algorithm will behave in the same way as the spectral noise scaling algorithm, except that a
noise cube rather than a noise spectrum would be produced. Abusing the local noise scaling algorithm in
this way is not recommended, though, as the spectral noise scaling algorithmwill always be more efficient
and thus much faster.

Ripple filter

Occasionally, data cubes are affected by low-level artefacts that are spatially and spectrally extended,
but somewhat variable across the sky or with frequency, for example a spectral ripple caused by solar
interference. Such weak features can get elevated above the sensitivity threshold after spatial and spectral

11

SFA 2 User Manual Preconditioning

smoothing in the S+C finder, potentially resulting in false detections. SoFiA 2 offers a special ripple filter
that can be applied to remove such artefacts, if necessary, by activating rippleFilter.enable.

The filter operates by calculating either the mean or the median (rippleFilter.statistic) across a
running window, the spatial and spectral size of which can be set by the user (rippleFilter.windowXY,
rippleFilter.windowZ). Likewise, the spatial and spectral step by which the window is moved can
be controlled (rippleFilter.gridXY, rippleFilter.gridZ); by default it will be set to half the win-
dow size. The mean or median is then subtracted from every individual pixel within the grid cell, unless
interpolation is enabled (rippleFilter.interpolate), in which case the values will first be linearly
interpolated in between grid cells before being subtracted from the data.

While the filter is fairly robust against outliers and the presence of genuine sources by using the
median in the averaging process by default, it should be used with great caution, as it has the potential to
remove genuine astronomical signal from the data cube. There is a particularly high risk in the presence
of spatially or spectrally extended astronomical sources such as nearby galaxies. The user is responsible
for defining sufficiently large spatial and spectral window sizes to ensure that even the most extended
sources expected to be present in the data cube do not affect the median value within the window.

The effect of the ripple filter on the data can in general be assessed by writing out the filtered cube
using the output.writeFiltered option. Comparing the filtered cubes with and without the ripple
filter enabled would allow the contribution from the filter to each pixel of the data cube to be exactly
quantified if necessary.

12

Source finding SFA 2 User Manual

Source finding

SoFiA 2 comes with two source finding algorithms: a simple threshold finder and the smooth + clip finder
(S +C finder). The threshold finder is rather basic and simply adds all those pixels to the source mask
that have an absolute flux density in excess of the specified threshold. Note that this explicitly includes
significant negative flux densities to avoid creating a positive bias. The threshold can be either absolute
or relative to the global RMS noise level in the data cube. The threshold finder is useful if a pre-filtered
cube is to be searched for signal exceeding a certain level of significance.

The S +C finder
The second algorithm, the S +C finder, is the most sophisticated source finding algorithm in SoFiA 2 and
the one that should normally be applied to data cubes for the purpose of blind source finding. The S +C
finder works by spatially and spectrally smoothing the original data cube on multiple scales as defined by
the user. In each smoothing iteration, a user-specified flux threshold relative to the global RMS noise level
after smoothing is applied to the data, and all pixels with an absolute flux density exceeding that threshold
will be added to the source mask. Note that this will extract pixels with both positive and negative flux
density to remove the bias that would otherwise result from just considering positive flux densities.

By smoothing the data on the relevant scales, the signal-to-noise ratio of sources with sizes matching
the smoothing scales will be maximised, making it possible to detect even faint, extended emission that
would remain below the noise level in the non-smoothed data cube. The signal-to-noise ratio of any source
will bemaximalwhen the spatial and spectral convolution filter sizematches the spatial and spectral extent
of the source, and it is the user’s responsibility to select the appropriate filter sizes for the kind of sources
expected to be present in the data.

SoFiA 2 will apply a Gaussian filter in the spatial domain and a boxcar filter in the spectral domain to
accommodate the fact that typical extragalactic H I sources, such as distant galaxies, have an exponential
radial surface brightness profile combined with a double-horn spectral profile with steep flanks. The
FWHM of the spatial Gaussian kernels are specified with the scfind.kernelsXY option and are in units
of pixels. The Gaussian filter is assumed to be symmetric in the two spatial dimensions. The widths of the
spectral boxcar filters are specified with the scfind.kernelsZ option and define the full width of the
boxcar filter in units of channels. Spectral boxcar filter sizes must be odd (3, 5, 7, . . .).

All filters from the spatial kernel list will be combined with all of the filters from the spectral kernel list,
andN spatial filters combinedwithM spectral filters will therefore result inN×M different combinations
of filters being applied. For each combination of spectral and spatial smoothing kernels, the algorithmwill
operate as follows:

1. Create a copy of the original data cube.

2. In the data cube copy, replace the values of all pixels already detected in a previous iteration with
scfind.replacement times the RMS in the original cube. This is to ensure that smoothing on
large scales does not smear out the emission over too large a region, as the resulting source mask
would otherwise extend far beyond the edge of the source.

3. Set all blanked pixels to a value of 0 prior to smoothing.

4. Convolve the data cube copy with the next set of spatial and spectral filters.

5. Change all originally blanked pixels from 0 back to blank.

6. Measure the RMS noise level in the smoothed copy.

7. In the source mask, mark all pixels as detected that have a flux density in the smoothed copy of
more than scfind.threshold times the smoothed RMS noise level.

13

SFA 2 User Manual Source finding

8. Delete the smoothed copy of the data cube again and continue with item 1 until all combinations of
spatial and spectral smoothing kernels have been applied.

At the end of this process, the source mask will contain all pixels that exceeded the source finding
threshold on at least one of the applied smoothing scales. The next steps will be to group the detected
pixels into coherent sources and discard those that are deemed spurious based on simple size thresholds.

A few important things should be noted in relation to the S+C finder. First of all, it is important
to specify all smoothing kernel sizes, both spatial and spectral, in the order of increasing size. This is
crucial, as otherwise the replacement mechanism for previously detected pixels would fail to prevent the
S+C finder from smearing out the source emission over too large an area. In particular, it is advisable to
always specify a kernel size of 0 as the first spatial and spectral kernel.

Another thing to note is that Gaussian spatial smoothing in SoFiA 2 is approximated by a series of
boxcar filters for reasons of speed. The algorithm can therefore in principle not approximate spatial filters
that are smaller than 3 pixels in size, and the smallest sensible spatial filter size (apart from 0) should
therefore be ≥ 3.

14

Linking of detected pixels SFA 2 User Manual

Linking of detected pixels

Before a source catalogue can be produced, the pixels recorded in the source mask will need to be grouped
into individual sources. This is achieved in SoFiA 2 by applying a basic friends-of-friends algorithm based
on merging lengths chosen by the user.

The algorithm will loop over the mask cube until it detects a pixel that has been marked as a detection,
but not yet associated with a source. That pixel will be assigned a new source ID, and the algorithm
will then recursively search all of the neighbouring pixels within a certain merging length for additional
detected pixels, all of which will be assigned the same source ID. Once the recursion ends, all pixels
belonging to that source will have been correctly labelled, and the algorithm will move on to link the next
source.

The user can control the merging lengths in the spatial and spectral dimensions of the cube by setting
the linker.radiusXY and linker.radiusZ options. The actual merging volume is assumed to be an
ellipsoid of the form

(x− x0)
2

r2xy
+

(y − y0)
2

r2xy
+

(z − z0)
2

r2z
≤ 1 (2)

where (x0, y0, z0) is the centre pixel the neighbours of which are to be checked, and rxy and rz are
the user-selected merging radii. All pixels (x, y, z) that fulfil the inequality above will be considered as
neighbours of pixel (x0, y0, z0) that need to be merged.

During the process of linking, SoFiA 2 will immediately reject linked sources that fall below (or above)
user-specified minimum (or maximum) size criteria, thereby providing a basic method of removing po-
tentially false detections caused by noise peaks or artefacts. The minimum size requirement for sources
can be specified with the linker.minSizeXY and linker.minSizeZ options for the spatial and spectral
dimensions, respectively. Likewise, the corresponding linker.maxSizeXY and linker.maxSizeZ op-
tions can be used to specify the maximum size requirement. Likewise, sources can be discarded based on
the total number of spatial and spectral pixels they contain (linker.minPixels, linker.maxPixels) or
their filling factor withing their rectangular bounding box (linker.minFill, linker.maxFill) which
is defined as the fraction of pixels within the bounding box that are part of the source.

Lastly, the linker will set a quality flag to indicate if a source is located near the edge of the cube or near
blanked pixels. The flag is a simple integer number that will take values of 0 (no issues), 1 (near spatial
edge of cube), 2 (near spectral edge of cube) and 4 (near blanked pixels). The flags are set whenever the
respective structure is located within the merging radius of the source, even if the mask does not directly
touch the edge or any blanked pixels. Flag values are additive, e.g. a value of 5 means that the source is at
the spatial edge of the cube and near blanked pixels at the same time.

Note that the linker can be disabled by setting linker.enable = false. In this case, the pipeline
will terminate after source finding, and no catalogue or source data products will be created. Disabling
the linker will therefore only be useful if the user is merely interested in the raw mask produced by the
source finder (setting output.writeRawMask = true).

15

SFA 2 User Manual Reliability calculation

Reliability calculation

Reliability calculation provides a way of automatically determining the reliability of detections and, by
setting a simple reliability threshold, discarding all sources that are deemed unreliable. This allows very
low source finding thresholds in the range of 3 to 4 times the RMS noise level to be applied without the
risk of having to deal with a large number of false detections in the resulting source catalogue.

Reliability calculation in SoFiA 2 is based on the method described by Serra et al. (2012). For this to
work, we must make the fundamental assumption that a data cube contains stochastic noise with a normal
distribution centred on zero plus the astronomical signal that we are interested in. We further assume that
all astronomical signal has positive flux. If we then apply a threshold, Sthresh, to the data cube to detect
all signals with |Si| > Sthresh, we can conclude that all signals with negative flux must be noise peaks,
whereas signals with positive flux can either be noise peaks or genuine astronomical signal.

Algorithm
SoFiA 2’s reliability calculation works by comparing the density of positive and negative detections in a
specific parameter space, be default (smax, ssum, smean), where smax = Smax/σrms is the peak flux density,
ssum = Ssum/σrms is the summed flux density and smean = ssum/npix is the mean flux density across
the source, which is equal to the sum divided by the number of pixels, npix. All three parameters are
normalised by the RMS noise level, σrms, of the data cube.6

Genuine detections are generally expected to populate a different region of parameter space than false
detections caused by noise peaks. By comparing the density of positive and negative detections in different
regions of parameter space, we can therefore estimate the probability for any of the positive detections in
that region to be genuine,

R =

{
npos−nneg

npos
for npos ≥ nneg,

0 otherwise,
(3)

where npos and nneg are the number of positive and negative detections in that region, respectively. If we
only have positive detections, thenR = 1, and all sources are deemed fully reliable. If, on the other hand,
we have an equal number of positive and negative detections, then R = 0, and we have no reason to
assume that any of the positive detections in that region are genuine. Note that, asR < 0 for nneg > npos,
we simply set R = 0 in this case.

The density of positive and negative detections is measured by performing a Gaussian kernel density
estimation (KDE) on the individual data points in parameter space. The optimal size of the the three-
dimensional Gaussian kernel is determined from the covariance matrix of the negative detections, which
are assumed to have a three-dimensional Gaussian distribution, as can be expected from false detections
caused by stochastic noise. The relative size of the Gaussian kernel used in the KDE can be controlled
by applying a constant scale factor using the reliability.scaleKernal option. The densities of the
positive and negative detections resulting from this analysis are then fed into Eq. 3 to determine the
reliability of all positive detections.

An example of the reliability analysis is shown in Fig. 2, where the dense cluster of positive and
negative detections marks the region in parameter space that is occupied by false detections due to noise.
The black sources in the upper-right corner are positive sources with more than 90% reliability that are
well separated from the cluster of noise peaks. SoFiA 2 produces such plots for diagnostic purposes if
requested by the user (option reliability.plot).

Parameter space
By default, SoFiA 2 uses a three-dimensional parameter space made up of peak flux density, summed flux
density and mean flux density (all of which are divided by the global RMS noise level and then logarith-

6If the noise varies across the cube, prior noise normalisation is required to ensure that the noise level is constant.

16

Reliability calculation SFA 2 User Manual

Figure 2: 2D projection of the distri-
bution of positive (red) and negative
(blue) detections in the 3D parameter
space used by SoFiA 2 for determining
the reliability of sources. The black
dots mark positive sources that have
been deemed more than 70% reliable.
The light-grey ellipses are 1σ, 2σ and
3σ contours of the 3D Gaussian func-
tion used in the kernel density estima-
tor, while the dark-grey, dashed line
marks the signal-to-noise limit below
which sources are generally discarded
irrespective of their reliability.

mised) to determine the density of positive and negative detections in parameters space for the purpose
of reliability calculation. However, the parameters to be used and the dimensionality of the parameter
space can be controlled by the user with the reliability.parameters option. This option expects a
comma-separated list of parameter names, the total number of which defines the dimensionality of the
parameter space to be used. It should be noted that this option is intended for expert users, and casual
users of SoFiA 2 are strongly advised to use the default parameter space instead. Possible parameters that
can be supplied to reliability.parameters include:

• peak – Logarithm of the peak flux density divided by the global RMS noise level.

• sum – Logarithm of the summed flux density divided by the global RMS noise level.

• mean – Logarithm of the mean flux density divided by the global RMS noise level.

• pix – Logarithm of the total number of spatial and spectral pixels.

• chan – Number of spectral channels.

• fill – Logarithm of the filling factor, i.e. the number of spatial and spectral pixels within the
rectangular source bounding box that have been detected.

• std – Standard deviation.

• skew – Skewness.

• kurt – Kurtosis.

All parameters are derived across the three-dimensional source mask. It is generally not advisable to
increase the dimensionality of the parameter space beyond 3–5, as the density of detections in a higher-
dimensional space will decrease rapidly to the point where a meaningful reliability can no longer be calcu-
lated within the size of the Gaussian kernel, as there may be too few detections. Likewise, the kernel size
will need to be adjusted whenever the dimensionality of the parameter space is changed (see Section 6.4).

17

SFA 2 User Manual Reliability calculation

SNR and pixel thresholds
The dashed, grey line in the right-hand panel of Fig. 2 represents a line of constant integrated signal-to-
noise ratio, SNRmin, and is controlled by the reliability.minSNR option. All detections that fall below
that line, i.e. detections where ∑

Si

σrms
√
NpixΩPSF

< SNRmin, (4)

are automatically removed from the catalogue and assigned a reliability of zero by default. Here,
∑

Si is
the sum of the flux densities across the source mask, σrms is the global RMS noise level of the data cube
(assumed to be constant),Npix is the total number of spatial and spectral pixels forming the detection, and
ΩPSF is the beam solid angle (in pixels).

!△WARNING

For the reliability.minSNR threshold to be meaningful, the relevantWCS and beam informa-
tion must be available from the FITS header (keywords BMAJ, BMIN and CDELT1), and the beam
must not vary with position or frequency. If no beam information is available then SoFiA 2 will
print a warning and implicitly assume that ΩPSF = 1, i.e. the beam size equals the pixel size.

In the same way as the signal-to-noise threshold, the user can choose to set a minimum threshold for
the total number of spatial and spectral pixels within the sourcemask using thereliability.minPixels
option. Any detections with fewer pixels in their mask will be considered as unreliable by default and will
have their reliability set to zero.

Kernel size optimisation
Another useful diagnostic plot produced by the reliability module is the Skellam plot, as it can be used
to asses if the kernel scale factor is optimal. If the kernel is too small then too few positive and nega-
tive detections will contribute to the reliability calculation, resulting in large statistical uncertainties and
thus inaccurate reliability values. If, on the other hand, the kernel is too large then negative detections
could influence the reliability of genuine sources, thus reducing the completeness of the source catalogue
produced by SoFiA 2.

The Skellam plot (generated if reliability.plot = true) can help with choosing an optimal kernel
size by showing the cumulative distribution of the Skellam parameter,

K =
npos − nneg√
npos + nneg

, (5)

evaluated at the positions of all negative detections. SoFiA 2 will then normalise the resulting Skellam
parameter values such that their standard deviation from themedian becomes 1, allowing their distribution
to be compared to a standard Gaussian. If the kernel size is optimal, then the cumulative distribution of
the normalised values of K should be the same as that of a Gaussian of standard deviation σ = 1. If the
kernel is too small, then the median, µ, of the distribution will be shifted into the negative range, while
a kernel that is too large would result in a shift into the positive range. An example Skellam plot for a
well-matched kernel is shown in Fig. 3. In this example, the median of µ = −0.053 is very close to zero,
indicating that the kernel scale factor of 0.4 chosen by the user is optimal.

As an alternative to manual optimisation of the reliability kernel, SoFiA 2 also offers a method of
automatically adjusting the kernel to an optimal size. This auto-kernel feature can be enabled by setting
reliability.autoKernel = true. In this case, SoFiA 2 will run the reliability analysis repeatedly
until the absolute value of the median of the renormalised Skellam distribution decreases below a user-
defined tolerance of reliability.tolerance. The algorithm will start with an unreasonably small
kernel scaling factor of 0.1 and then gradually increase the scaling factor in each iteration until the median

18

Reliability calculation SFA 2 User Manual

-4.0 -2.0 0.0 2.0 4.0
0.0

0.2

0.4

0.6

0.8

1.0

(P - N) / sqrt(P + N) normalised to σ = 1

C
um

ul
at

iv
e

fr
ac

tio
n

Data (µ = -0.053,
kernel = 0.40)
Gaussian (σ = 1)

Figure 3: Example of a Skellam plot generated by the reliability module of SoFiA 2. The cumulative distribution of the
Skellam parameter (Eq. 5) is shown as the red curve and closely follows that of a Gaussian of standard deviation σ = 1
(grey curve), indicating that the size of the kernel is optimal. The parameters listed in the legend are the location of
the median of the Skellam distribution (here: µ = −0.053) and the kernel scale factor set by the user (here: 0.4).

is found to have dropped below the tolerance. If the algorithm fails to converge within a certain number of
iterations (defined by reliability.iterations), then the value of reliability.scaleKernel will
be used instead and awarningmessagewill be printed. Users are strongly advised to check the output from
the reliability module, including the Skellam plot, to ensure that the final kernel size is indeed acceptable.

Dealing with artefacts
One potential issue with reliability calculation is that negative artefacts have the potential to reduce the
reliability of astronomical sources if they occupy the same parameters space. Such issues could arise from
continuum subtraction residuals or from actual H I absorption seen against bright continuum sources.
SoFiA 2 offers a solution to this problem by allowing the user to specify a catalogue of sky positions to
be excluded from the reliability analysis (using the reliability.catalog option). Negative detections
with a spatial bounding box encompassing any of the positions in the catalogue will then be excluded from
the reliability analysis. This can help with reducing the impact of continuum residuals or H I absorption
(which is typically collocated with bright continuum sources) on the reliability analysis and reduce the
number of genuine detections that are erroneously discarded as unreliable by SoFiA 2.

The catalogue file must contain exactly two columns listing the longitude and latitude of the sky posi-
tions to be excluded in the native coordinate system and units of the input data cube (e.g. right ascension
and declination in decimal degrees). Columns can be separated by spaces, tabulators or commas, and en-
tire lines can be commented out using the # character. Note that while the affected negative detections
will be excluded from the reliability analysis itself, they will nevertheless be retained in the list of detec-
tions and will therefore still show up in the reliability plot, although having no effect on the surrounding
positive detections in this case.

19

SFA 2 User Manual Mask dilation

Mask dilation

The problem with any source finding algorithm based on setting a threshold is that it will exclude any
emission from the source that sits below that threshold, potentially resulting in source masks that are
too small and therefore missing some of the flux from the outer regions of the source. This becomes
particularly problematic if a fairly high source finding threshold needs to be set, e.g. due to artefacts in
the data.

One way of alleviating the problem of missing flux is to grow the source mask outwards until all
source flux is included. This is the purpose of SoFiA 2’s mask dilation algorithm. It works by iteratively
growing themask outwards until the relative increase in integrated flux per iteration drops below a relative
threshold set by the user or until a maximum number of iterations is reached, whichever occurs first. Mask
dilation will be carried out separately along the spectral axis and within the spatial plane, with spectral
dilation occurring before spatial dilation.

The maximum number of spatial and spectral iterations can be set by the dilation.iterationsXY
and dilation.iterationsZ parameters, which default to 10 and 5, respectively. The relative threshold
is set with the dilation.threshold parameter, with dilation stopping as soon as the flux increase in an
iteration is smaller than the relative threshold times the total flux of the source. The default threshold value
is 0.001, i.e. 0.1% of the total flux. Note that a positive value of dilation.threshold will work correctly
for sources with either positive or negative total flux, while any negative value of dilation.threshold
will disable the flux check altogether and instead always carry out the maximum number of iterations.

SoFiA 2’s mask dilation algorithm uses a circular dilation kernel in the spatial plane, the radius of
which will increase by 1 pixel in each iteration. This ensures that dilation occurs as evenly as possible in
all directions while roughly preserving the overall shape of the source. Dilation along the spectral axis
simply extends the mask by 1 channel in each iteration.

All relevant source parameters will be updated during mask dilation. In addition, the quality flag will
get updated with a flag value of 8 if the mask of a source touches that of a neighbouring source during the
dilation process. Note that pixels belonging to a different source will in general be excluded from the mask
dilation. Hence, checking the flag value after mask dilation is an important way of identifying possible
cases of adjacent sources that may be connected and could be part of one and the same object.

Lastly, mask dilation should be used with caution, as it has the potential to introduce a systematic
positive flux bias. In particular, mask dilation should not generally be required if the S+C finder is used
with a fairly low detection threshold in the range of 3–4σ.

20

Source parameterisation SFA 2 User Manual

Source parameterisation

Once linking, reliability filtering (optional) andmask dilation (also optional) have been completed, SoFiA 2
will be able to measure a range of basic source parameters in a process referred to as source parameterisa-
tion (or source characterisation). Source parameters are measured across the source mask, i.e. including
all pixels considered part of the source according to the mask. An overview of all source parameters mea-
sured by SoFiA 2 is presented in Table 1. The methodology used for measuring some of the less intuitive
parameters is explained below.

An important aspect of parameterisation is that by default SoFiA 2 will measure all parameters using
the native pixel and flux density values of the data cube. Hence, positions will be provided in pixels,
line widths in channels, integrated fluxes as simply the sum of all flux densities across the source, etc.
However, conversion to physically meaningful parameters can be enabled by setting the parameter.wcs
and parameter.physical options to true. The former will convert pixel and channel coordinates to the
appropriate world coordinate system (WCS) usingclib and the relevant FITS header information, while
the latter will multiply relevant parameters by the spectral channel width and divide spatially integrated
parameters by the beam solid angle to correct for the correlation of spatial pixels due to the beam size.

!△WARNING

If parameter.physical = true then SoFiA 2 will try to automatically convert some parameters
to physical units under the implicit assumptions that the beam size specified in the header (FITS
header keywords BMAJ and BMIN) is correct and does not change with position or frequency and
that the spectral annels are uncorrelated and the spectral resolution is equal to the channel
width. If any of these assumptions is incorrect then the resulting physical parameters, such as
integrated flux, may bewrong. SFA 2 does in principal not correct linewidths for instrumental
broadening.

Source position

Measurement of the three-dimensional location, (x̄, ȳ, z̄), of a source in the data cube is one of the most
fundamental parameterisation steps. The most meaningful approach – and the one used by SoFiA 2 – is
to determine the flux-weighted centroid of the source, which is equivalent to the first moments in x, y and
z, hence

x̄ =

∑
i xiSi∑
i Si

(6)

and likewise for ȳ and z̄, where the summation is over all pixels of the source, and Si is the flux density
measured in pixel i.7 Note that in order to prevent negative signals from affecting the centroid measure-
ment, SoFiA 2 will only use pixels with positive (negative) flux density in its measurement of the source
position and uncertainty of positive (negative) sources. Source positions will be provided in raw pixel co-
ordinates relative to either the full data cube or, if specified, the requested subregion. Additional celestial
and velocity/frequency coordinates can be created by enabling the parameter.wcs option.

The statistical uncertainty of the flux-weighted centroid measurement can be derived by applying the
error propagation law under the fundamental assumptions that the only source of statistical error is from
Gaussian noise in the image and that we operate in the linear regime required for the error propagation

7The geometric centroid could in principle be calculated from the same equation by setting a constant weight of Si = 1 instead
of using the actual flux density value.

21

SFA 2 User Manual Source parameterisation

law to be applicable. The variance of the centroid is then given as

σ2
x̄ =

∑
i

(
∂x̄

∂Si

)2
σ2
Si

(7)

and likewise for σȳ and σz̄ . By applying the quotient rule to solve the partial derivative and assuming a
constant noise level, σSi = σrms, across the entire image, we obtain

σ2
x̄ =

(
σrms

Stot

)2 ∑
i

(xi − x̄)2 (8)

and likewise for σȳ and σz̄ , where Stot =
∑

i Si is the summed flux density across the source. It should
be noted that Eq. 8 would only be strictly valid if no flux threshold had been applied to the data when
calculating the centroid, as any threshold would result in an additional aliasing bias that Eq. 8 does not
account for in its current form.

Another issue with Eq. 8 is that is does not account for the fact that the flux density values in adjacent
pixels might be correlated due to the finite beam size. If the parameter.physical setting is enabled,
SoFiA 2 will additionally multiply the uncertainty by the square root of the beam solid angle, ΩPSF, to
correct for the effect of correlated pixels, thus

σ2
x̄ = ΩPSF

(
σrms

Stot

)2 ∑
i

(xi − x̄)2 (9)

and likewise for σȳ and σz̄ . The beam solid angle is derived from the BMAJ and BMIN keywords in the
header of the input data cube and measured in units of pixels. It is further assumed to be constant across
the entire spatial and spectral range covered by the data cube and described by an elliptical Gaussian (see
Eq. 13). It should be noted that Eq. 9 is only an approximation to the true statistical uncertainty that should
be accurate to within about 30%. A full covariance analysis or mock data test would be required to obtain
more accurate position uncertainties.

Lastly, SoFiA 2 will also provide the position of the pixel containing the highest flux in the integrated
flux map as well as the channel containing the highest flux density in the integrated spectrum of the
source. These are identified by the additional suffix ‘_peak’ and can be useful in certain situations, for
example for diagnostic purposes. Note that the peak position parameters are integer values corresponding
to their respective pixels, and no statistical uncertainties will be provided for that reason.

Flux density
The minimum and maximum flux density of a source is simply defined as

Smin = min{Si} , Smax = max{Si} . (10)

The statistical uncertainty of both the minimum and maximum flux density is simply given by the RMS
noise level of the data, σrms, assuming that the noise is constant across the extent of the source.

It should be noted that – in the presence of noise – selecting the maximum flux density value will
result in a systematic positive bias, the significance of which will depend on the shape and extent of the
source. This is due to the fact that the maximum flux density is more likely to be coincident with a positive
noise peak than with a negative one. A morphology-dependent, statistical bias correction would therefore
need to be applied to correct for this bias.

Flux
SoFiA 2 derives the total flux by summing the flux density values of all spatial and spectral pixels covered
by the source, thus

Ssum =
∑
i

Si . (11)

22

Source parameterisation SFA 2 User Manual

The resulting value will be in native flux units of the data cube, typically Jy/beam, and has not yet
been corrected to account for the beam solid angle or the spectral channel width of the data. If the
parameter.physical option is enabled and the native flux density unit (BUNIT) of the data cube is
Jy/beam, then SoFiA 2 will multiply the total flux by the width, ∆z, of a spectral channel and divide by
the solid angle, ΩPSF, of the beam,

Ssum =
∆z

ΩPSF

∑
i

Si , (12)

as derived from the CDELT3 header keyword and the beam information stored in the data cube header
(BMAJ and BMIN keywords). The native spectral unit of the cube as specified by the CUNIT3 keyword will
be used.8 The beam is assumed to be described by a two-dimensional, elliptical Gaussian function, and
the beam solid angle is calculated as

ΩPSF =
πϑaϑb

4 ln(2) , (13)

where ϑa and ϑb are the full width at half maximum of the major and minor axis of the Gaussian beam in
units of pixels (not seconds of arc). Furthermore, the assumption is made that the beam is constant across
the spatial and spectral range covered by the data cube.

The statistical uncertainty of the integrated flux can in principle be derived by applying the error
propagation law to Eq. 11, hence

σ2
Ssum

=
∑
i

(
∂Ssum

∂Si

)2
σ2
Si

=
∑
i

σ2
Si

= Npixσ
2
rms , (14)

where Npix is the total number of pixels across which the signal is integrated. In the last step we again
make the assumption that the noise is constant across the extent of the source. As before, this has not yet
been corrected for the spectral channel width or the correlation of spatial pixels due to the beam. If we
multiply by the spectral channel width and in addition account for the degree of spatial correlation of the
noise in adjacent pixels, we instead obtain

σSsum =

√
Npix

ΩPSF
∆z σrms (15)

for the uncertainty of the true integrated flux of a source. It should be noted that the purely statistical flux
uncertainties derived by SoFiA 2 are not usually representative of the true errors of the flux measurement.
In most cases, the integrated flux error is dominated by contributions from systematic errors that are
significantly larger than the small statistical errors caused by stochastic noise. A realistic error analysis
would therefore have to be based on numerical methods such as the injection of model sources of known
flux into the data cube.

Line widths
SoFiA 2 will measure the width of the integrated spectral profile of sources at levels of 20% and 50% of the
peak flux density of the profile (w20 and w50, respectively). The algorithm will move from both edges of
the spectrum inwards up to the point where the flux density is found to have increased to more than 20%
or 50% of the peak. The separation between those two points on either side of the spectral profile then
defines the width of the line. In order to improve the accuracy of the measurement, SoFiA 2 will carry out
a linear interpolation across the two channels in between which the flux density exceeds the respective
threshold level.

It should be noted that this method of measuringw20 and w50 is strongly affected by the noise level in
the spectrum, and line widths may get overestimated due to the impact of individual noise peaks. This will

8If the CUNIT3 keyword is missing, the default units defined by the FITS standard will be used instead.

23

SFA 2 User Manual Source parameterisation

in part be alleviated by the fact that the peak flux density will generally be overestimated as well in the
presence of noise. A more accurate method of measuring line widths would be to fit an analytic function
to the spectral profile, e.g. a Gaussian function for simple profiles, or a Busy Function (Westmeier et al.
2014) in the case of double-horn profiles.

Ellipse fitting
The purpose of ellipse fitting is to obtain a measure of the angular size and orientation of a source. One
of the fastest and easiest ways of fitting an ellipse to the two-dimensional image of a source is through
spatial moment analysis (Banks et al. 1995). Let us define the second-order moments of the image as

Mxx =

∑
i(xi − x̄)2Si∑

i Si
, (16)

Myy =

∑
i(yi − ȳ)2Si∑

i Si
, (17)

Mxy =

∑
i(xi − x̄)(yi − ȳ)Si∑

i Si
, (18)

where the summation is over all spatial pixels, i, of the source, and (x̄, ȳ) is the spatial centroid of the
source as defined in Eq. 6. Following Banks et al. (1995), the parameters of the ellipse are then given as

a =

√
2
(
Mxx +Myy +

√
(Mxx −Myy)2 + 4M2

xy

)
, (19)

b =

√
2
(
Mxx +Myy −

√
(Mxx −Myy)2 + 4M2

xy

)
, (20)

θ =
1

2
arctan

(
2Mxy

Mxx −Myy

)
, (21)

where a and b are the full major and minor axis size, respectively, and θ is the position angle of the
ellipse. If the source is a two-dimensional, elliptical Gaussian function, then a/2 and b/2 will be identical
to the standard deviations, σa and σb, along the major and minor axis of the Gaussian, because the second
moment describes the dispersion of the data.

SoFiA 2 performs two different types of spatial ellipse fits to the moment-0 map of each source. It first
fits an ellipse to all pixels of the moment map with positive flux density, weighting each pixel by its flux
density. The second fit is carried out on all pixels of the moment map with a signal-to-noise ratio of > 3
and with equal weighting of each pixel. The former will typically place more weight on the bright, central
regions of a source, while the latter will normally provide a better description of the overall shape and
size of an object at the 3σ level, although this critically depends on the surface brightness of the object
relative to the noise level of the data.

It should be noted that the ellipse sizes and orientation angles derived in this way will be relative to
the pixel grid, not relative to the world coordinate system associated with the data cube. The major and
minor axis of the ellipse will be provided in units of pixels, while the orientation angle will be given in
degrees, running from −90◦ (right) across 0◦ (top) to +90◦ (left) in the mathematically positive sense.

Kinematic major axis
SoFiA 2measures the position angle of the kinematic major axis of a source by first calculating the centroid
of the emission in each individual channel, taking only values above three times the local noise level into
account. If the source is a rotating galactic disc, then the resulting points should form a straight line on
the sky that marks the kinematic major axis of the galaxy. In order to extract the position angle, SoFiA 2
will fit a straight line using Deming regression (also known as orthogonal regression) and convert the
resulting slope into a proper position angle in degrees such that 0◦ points upwards and the resulting

24

Source parameterisation SFA 2 User Manual

direction corresponds to the side of the galaxy that occupies the upper end of the channel range covered
by the source.

Note that it is the responsibility of the user to rotate the position angle by 180◦ if necessary to comply
with the desired definition with respect to the approaching or receding side of the galaxy. This will also
depend on whether the data cube is provided in units of frequency or velocity. It should also be noted that
the position angle will be relative to the pixel grid of the data cube, not the underlying celestial coordinate
system.

Table 1: List of source parameters and associated Unified Content Descriptors (UCD; Derriere et al. 2005)
as supplied by SoFiA 2. Depending on the actual data cube and user settings, not all of the parameters
will be present in a particular source catalogue.

Parameter UCD Description
name meta.id Name of source.
id meta.id Unique integer number identifying source.
x
y
z

pos.cartesian.x
pos.cartesian.y
pos.cartesian.z

Flux-weighted centroid position of source in pixels.

x_peak
y_peak

pos.cartesian.x
pos.cartesian.y

Pixel with highest flux in integrated flux map.

z_peak pos.cartesian.z Channel with highest flux density in integrated spec-
trum.

x_min
x_max
y_min
y_max
z_min
z_max

pos.cartesian.x;stat.min
pos.cartesian.x;stat.max
pos.cartesian.y;stat.min
pos.cartesian.y;stat.max
pos.cartesian.z;stat.min
pos.cartesian.z;stat.max

Bounding box of source in x, y and z in pixels, inclusive
of the limit itself.

n_pix meta.number;instr.pixel Total number of spatial and spectral pixels covered by
source.

f_min
f_max

phot.flux.density;stat.min
phot.flux.density;stat.max

Minimum and maximum flux density in native units of
data cube.

f_sum phot.flux Sum of flux densities across source in native units of data
cube.

rel stat.probability Reliability in range of 0 (unreliable) to 1 (reliable).
flag meta.code.qual Flag indicating if source is located near spatial (1) or

spectral (2) edge of cube, near blanked pixels (4) or adja-
cent to other source (8). Flag values are additive.

fill stat.filling Filling factor of mask within its bounding box.
mean
std

phot.flux.density;stat.mean
phot.flux.density;stat.stdev

Mean and standard deviation of flux densities across
mask.

skew
kurt

stat.param
stat.param

Skewness and kurtosis of flux densities across mask.

rms instr.det.noise RMS of local noise within bounding box of source in na-
tive units of data cube.

w20
w50

spect.line.width
spect.line.width

Width of spectral line at 20% and 50% of peak flux den-
sity.

wm50 spect.line.width Line width at 50% of mean flux density.

25

SFA 2 User Manual Source parameterisation

ell_maj
ell_min

phys.angSize
phys.angSize

Major and minor axis size of ellipse fitted to integrated
flux density map in units of pixels. Pixels are weighted
by flux density.

ell3s_maj
ell3s_min

phys.angSize
phys.angSize

Same as ell_maj and ell_min, but including only pix-
els above 3 times the local RMS and without weighting.

ell_pa pos.posAng Position angle for ell_maj in range of −90◦ to +90◦,
where 0◦ points up.

ell3s_pa pos.posAng Same as ell_pa, but for ell3s_maj.
kin_pa pos.posAng Position angle of kinematic major axis in range of 0◦ to

360◦, where 0◦ points up. Refers to side of object oc-
cupying upper end of spectral channel range covered by
source.

ra
dec
l
b

pos.eq.ra
pos.eq.dec
pos.galactic.lon
pos.galactic.lat

Right ascension and declination, or longitude and lati-
tude, of source centroid position, (x, y), in native world
coordinates of data cube; usually in degrees. The same
parameters with the additional suffix ‘_peak’ corre-
spond to (x_peak, y_peak) instead.

freq
v_rad
v_opt
v_app

em.freq
spect.dopplerVeloc.radio
spect.dopplerVeloc.opt
spect.dopplerVeloc

Frequency or velocity of source centroid position, z, in
native world coordinates of data cube; usually in Hz or
m/s. The same parameters with additional suffix ‘_peak’
correspond to z_peak instead.

err_x
err_y
err_z

stat.error;pos.cartesian.x
stat.error;pos.cartesian.y
stat.error;pos.cartesian.z

Statistical uncertainty of centroid position, (x, y, z).

err_f_sum stat.error;phot.flux Statistical uncertainty of integrated flux, f_sum.

26

Output products SFA 2 User Manual

Output products

SoFiA 2 offers a wide range of different output products to be generated from the source finding and
parameterisation results that are not restricted to just source catalogues. All output products will be
written to the same directory as the input data file unless a different output directory has been specified
by the user (output.directory option). Likewise, the name of the input data file will be used as the base
name for all output products unless a different base name has been specified (output.filename option).
Output file names consist of the base name followed by an underscore (_) and a product identifier (e.g.
cat for catalogues). As an example, if the input file name was ngc_300_mosaic.fits, then the output
catalogue would be named ngc_300_mosaic_cat.txt and so forth.

The output.overwrite option allows the user to decide whether existing files should automatically
be overwritten or not. If set to false, SoFiA 2 will explicitly check for the presence of any output files at
the beginning of the pipeline and terminate with an error message if a file already exists.

Source catalogue
The most important output file provided by SoFiA 2 is the source catalogue resulting from the pipeline
run. Source catalogues contain a list of all detected sources and their basic parameters such as position,
line width, flux, etc. Catalogues are offered in four different possible formats:

• ASCII (_cat.txt) — Plain text file containing the source catalogue in human-readable ASCII for-
mat; not intended for quantitative analysis.

• XML (_cat.xml) — XML file containing the source catalogue in VO Table format for processing
with VO-compliant tools such as opca.

• SQL (_cat.sql) — File containing commands for creating an SQL database table and inserting the
source parameters into that table.

• Karma (_cat.ann) — Not a catalogue as such, but a Karma annotation file that can be used to
display source IDs on images viewed in Karma packages such as kvis.

The ASCII catalogue is meant to enable users to quickly inspect the output catalogue by eye, but may not
be ideal for quantitative analyses, as the precision of some of the columns may be limited. The XML and
SQL catalogues are much more suitable for a numerical analysis of source parameters, in particular in
combination with VO-compliant analysis and visualisation tools, as all parameters are stored at the full
available precision.

The XML catalogue also has Unified Content Descriptors (UCDs) defined to allow VO-compliant soft-
ware tools to automatically determine the relevant columns of the catalogue, e.g. for extracting sky po-
sitions. The SQL catalogue can be imported into any SQL database. It will attempt to create a new data
table named SoFiA-Catalogue and insert the measured parameters of all sources into that table. The
catalogue file would have to be edited to change the default table name.

Image products
In addition to catalogues, SoFiA 2 can produce a range of image products to assist with the assessment
and interpretation of the source finding results. These include:

• Noise cube (_noise.fits) — 3D cube containing the RMS noise level as measured by the local
noise scaling algorithm.

• Noise spectrum (_noise.txt) — 1D spectrum containing the RMS noise level as measured by the
spectral noise scaling algorithm.

• Filtered cube (_filtered.fits) — Copy of the 3D data cube after preconditioning such as flagging
or noise scaling.

27

SFA 2 User Manual Output products

• Mask cube (_mask.fits) — Final 3D source detection mask established by SoFiA 2. All detected
pixels in the mask cube are set to their respective source ID as listed in the catalogue, while unde-
tected pixels have a value of 0.

• Mask image (_mask-2d.fits) — Spectrally projected 2D image of the 3Dmask cube to showwhich
spatial pixels contain source emission. Note that in the 2D mask image sources may be hidden
behind other sources, thus making their source IDs invisible.

• Raw mask cube (_mask-raw.fits) — Raw, binary source detection mask created by the source
finding algorithm prior to linking and filtering. The raw mask will contain all pixels originally
picked up by the source finder (including those with negative flux) and is therefore mainly intended
for debugging purposes. Detected pixels will have a value of 1, all other pixels will be 0.

• Momentmaps (_mom0.fits, _mom1.fits, _mom2.fits) — 2D images of the 0th, 1st and 2nd spectral
moments of the data cube across the source mask. All data will be used for the 0th moment, while
the 1st and 2nd moment will only include channels with positive flux density.

• Channel map (_chan.fits) — 2D image showing the number of channels that contributed to the
0th spectral moment in each spatial pixel. This can be useful when estimating statistical uncertainties
associated with the moment-0 map.

Note that creation of each of these data products will need to be explicitly enabled in the parameter file
by setting the respective options in the output module.

All output images created by SoFiA 2 will by default be in native pixel and flux density units. By
enabling the parameter.wcs option, the user can choose to create all moment maps in proper physical
units by converting spectral channels to world coordinates in frequency or velocity units. It is crucial for
this purpose that the WCS information in the header is accurate, as otherwise the relevant map values
might be incorrect.

Cubelets
In addition to the global image products introduced in Section 9.2, SoFiA 2 is also capable of producing
cutouts of each detected source (so-called cubelets) and related, source-specific data products. These can be
enabled by setting output.writeCubelets = true, and output.writePV = true if position–velocity
diagrams are also desired, and are stored in a directory the name of which is the base name followed by
_cubelets. The name of each of the source-specific files follows the following scheme:

basename_id_prod.type

where basename is the file base name, id is the source ID from the catalogue, prod is the product identifier,
and type is the file type suffix. As an example, the cubelet of source number 3 from the catalogue obtained
from the input data cube ngc_300_mosaic.fits would be named ngc_300_mosaic_3_cube.fits and
stored in the subdirectory ngc_300_mosaic_cubelets. The following list gives an overview of the indi-
vidual source-specific data products provided by SoFiA 2:

• Cubelet (_cube.fits) — Small 3D data cube containing a cutout of the source from the original
data cube.

• Mask (_mask.fits) — Small 3D cube containing a cutout of the source mask. Pixels belonging to
the source will have a value of 1, while all other pixels are set to 0, including those belonging to
other sources.

• Momentmaps (_mom0.fits, _mom1.fits, _mom2.fits) — 2D images of the 0th, 1st and 2nd spectral
moments of the source cubelet across the source mask. Note that all data will be used in the 0th
moment, while the 1st and 2nd moment will include only those channels with a flux density greater
than output.thresholdMom12 times the local RMS noise level.

28

Output products SFA 2 User Manual

• Channel map (_chan.fits) — 2D image showing the number of channels that contributed to each
pixel of the 0th spectral moment map.

• SNRmap (_snr.fits) — 2D image showing the signal-to-noise ratio in each pixel of the 0th spectral
moment map, calculated as SNR =

∑
Si/(

√
N × σrms), where

∑
Si is the sum of all flux densities

along the spectral axis, N is the number of spectral channels summed over, and σrms is the local
RMS noise level measured at the position of the source.

• PV diagrams (_pv.fits, _pv_min.fits) — FITS files containing 2D position–velocity diagrams
along the kinematic major (kin_pa) and minor (kin_pa+90◦) axes through the flux-weighted
centroid (x, y, z) of each source. These are for diagnostic purposes only, as they may not be ac-
curate enough for scientific analysis. Note that PV diagrams need to be specifically enabled with
output.writePV = true.

• PV masks (_pv_mask.fits, _pv_min_mask.fits) — FITS files containing 2D source masks in
position–velocity space to be used with the position–velocity diagrams. Note that PV diagrams
need to be specifically enabled with output.writePV = true.

• Spectrum (_spec.txt) — Text file containing the integrated spectrum of the source across the
source mask. The number of spatial pixels contributing to each spectral channel is also recorded,
allowing uncertainties to be derived.

As in the case of global output products, the parameter.wcs and parameter.physical options can be
enabled to convert moment maps and spectra to world coordinates and divide all spectra by the beam solid
angle, respectively. In addition, the amount of padding around the source in each of these data products
can be controlled by the user by setting the value of output.marginCubelets. The default value is
10 pixels, while a value of 0 can be used to ensure that images and spectra are tightly cut without extra
padding around the source, thus minimising file sizes and disk storage requirements.

Diagnostic output
SoFiA 2 can produce a few additional output files for diagnostic purposes that may be helpful in assessing
the quality and success of the source finding run. These include:

• Reliability plot (_rel.eps) — Plot summarising the outcome of the reliability filter in EPS for-
mat. This is useful for assessing the quality of the reliability calculation carried out by SoFiA 2 (see
Section 6).

• Skellam plot (_skellam.eps) — Plot showing the cumulative distribution of the Skellam parameter
as defined in Eq. 5. This can be used to check if the size of the kernel used in the reliability calculation
is optimal (see Section 6.4).

• Auto-flagging log (_flags.log) — Log file listing the spectral channels and spatial pixels flagged
by the auto-flagger (see Section 3.1).

Note that these diagnostic files will only be generated if explicitly requested by the user.

29

SFA 2 User Manual Tips and tricks

Tips and tricks

Example parameter file
A basic example parameter file for deep source finding on an extragalactic H I data cube is presented here.
It is assumed that the cube is clean with a constant noise level across the entire cube and without any
noticeable artefacts.

scfind.kernelsXY = 0, 5, 10
scfind.kernelsZ = 0, 3, 7, 15, 31
scfind.threshold = 3.8
scfind.replacement = 2.0

linker.radiusXY = 2
linker.radiusZ = 3
linker.minSizeXY = 5
linker.minSizeZ = 5

reliability.enable = true
reliability.threshold = 0.8
reliability.scaleKernel = 0.4
reliability.minSNR = 3.0
reliability.plot = true

output.writeCatASCII = true
output.writeCatXML = true
output.writeMoments = true
output.writeCubelets = true

The first block of commands sets up the S+C finder (module scfind). We choose spatial smoothing
kernel sizes of 0, 5 and 10 pixels and spectral smoothing kernel sizes of 0, 3, 7, 15 and 31 channels. These
numbers may need to be slightly adjusted depending on the actual number of pixels across the beam and
the actual spectral resolution of the cube, as we ideally want to smooth over a range of scales up to the
largest expected spatial and spectral scale of our sources.

The second block of commands sets up the linker (module linker) that allows us to merge detected
pixels into coherent sources. We choose to link pixels across a spatial radius of 2 and a spectral radius of
3 here. Lastly, we require a source to extend across at least 5 spatial pixels and 5 spectral channels to be
retained in the catalogue. Any smaller detections will be discarded.

With the third block of commands we set up the reliability filter (module reliability) which will
calculate the statistical reliability of each detection and discard everything below a given threshold. We
set the threshold to 0.8 here (i.e. keeping only sources with a reliability in excess of 80%). In addition, we
set a minimum signal-to-noise threshold of 3, thereby discarding all sources that are too faint. In addition,
we set the scale factor of the kernel used in measuring the reliability to a value of 0.4 and enable the
generation of diagnostic plots.

In the last block of commands we define the output products and settings (module output). This
includes writing the source catalogue in plain-text and VO-compatible XML format, writing out moment
maps and creating images and spectra for each individual detection.

Assuming that these settings are stored in a file named sofia.par, we can then launch SoFiA 2 by
calling

sofia sofia.par input.data=datacube.fits

where datacube.fits needs to be replaced with the actual name of the input data cube. This will run
SoFiA 2 and produce the selected output catalogues and images.

30

Tips and tricks SFA 2 User Manual

2D images
As mentioned before, SoFiA 2 is capable of handling 2D images such as radio continuum maps. Such im-
ages will internally be treated as 3D cubes with an axis size of 1 in the frequency dimension. For SoFiA 2 to
work correctly on 2D images, a few special settings are required. Most importantly, the settings of the S +C
finderwill need to be adjusted to disable smoothing along the frequency axis by setting scfind.kernelsZ
= 0. Hence, only spatial smoothing kernels can be applied using the scfind.kernelsXY option.

Likewise, the linker settings must be adjusted to account for the 2D nature of the input. In particular,
the maximum merging radius along the frequency axis must be set to linker.radiusZ = 1 to ensure
the correct application of the spatial merging radius in the remaining two dimensions. In addition, the
minimum source size along the frequency axis must be set to linker.minSizeZ = 1, as the spectral
extent of 2D sources cannot be greater than one channel.

The source catalogue produced from 2D images will also contain parameters that are only relevant to
3D cubes, such as the frequency of the source or its spectral line width. Such parameters should simply
be ignored and in many cases may have been set to a default value of zero. SoFiA 2 will in principle not
produce certain output data products if the input image is 2D. Omitted products include the integrated
spectrum as well as the 1st and 2nd spectral moment maps, although the 0th moment will be generated,
effectively containing a masked copy of the input image.

To summarise, the most important point to remember when processing 2D images is to set frequency-
related control parameters to the following default values:

scfind.kernelsZ = 0
linker.minSizeZ = 1
linker.radiusZ = 1

Similar restrictions apply with respect to the frequency-related parameters of optional methods such as
the local noise scaling algorithm.

Absorption lines
While intended for detecting H I emission lines, SoFiA 2 can in principle be used to search for spectral
absorption signals in data cubes. For this to work, the data cube will need to be inverted by enabling the
input.invert option in SoFiA 2. It should be noted that the extraction of absorption features might fail
in cases where both H I absorption and emission is present in a source, as SoFiA 2 will by default merge
significant positive and negative signal into the same detection.

Extracting a sub-cube
While originally a source finding pipeline, SoFiA 2 can also be employed to simply extract a smaller sub-
region out of a large FITS data cube. This can be achieved by explicitly disabling all modules and output
products except for the following settings:

input.data = <data_cube>
input.region = <requested_region>
output.writeFiltered = true

where <data_cube> is the input FITS data cube, and <requested_region> is the subregion to be ex-
tracted. Assuming all other settings are disabled by setting them to false where required, SoFiA 2 will
then simply read the requested subregion from the input cube and write it straight into an output file with
the additional suffix _filtered. The pipeline will terminate thereafter, as nothing else would be left to
do.

Note that extracting a sub-cube will only require as much memory as is needed for storing the subre-
gion. Sufficiently small subregions can therefore be extracted from FITS cubes that are far larger than the
amount of memory available on a machine.

31

SFA 2 User Manual Tips and tricks

Source catalogue in Python
The Aop package contains a Table module for handling VOTable files, making it straightforward to
load the SoFiA 2 source catalogue in XML format into Python. This can be done with the following lines
of code (remember to replace catalogue.xml with your actual catalogue file name):

from astropy.table import Table
table = Table.read("catalogue.xml")

This will create an Aop table object that contains the full catalogue. The individual columns of the
table can then be accessed by their parameter name. For example,

table["f_sum"]

will extract the entire column of integrated flux measurements into a single 1D array. The fluxes of indi-
vidual sources can then be extracted by index as table["f_sum"][0] and so forth.

Note that Aop’s Table module is also capable of reading the plain-text catalogue from SoFiA 2
using Table.read("catalogue.txt", format="ascii"). However, due to the limited precision and
difficulty extracting the parameter names and units in this case we strongly advise users to work with
the XML catalogue only. Please see the Aop documentation for more information on reading and
handling tables.

As is typical for Python, there are countless other options for reading VOTable or plain-text cata-
logues from SoFiA 2. Examples include the astropy.io.votable module which provides a method
called parse_single_table() for reading VOTables, the ascii() method from astropy.io which
can read the plain-text catalogue from SoFiA 2, and the loadtxt() method from NmP which can be
used to read the numerical data columns from the plain-text catalogue into a floating-point array. Each of
these methods comes with its own advantages and drawbacks, and we refer the reader to the respective
online documentation for further details.

32

https://docs.astropy.org/en/stable/table/
https://docs.astropy.org/en/stable/io/votable/
https://docs.astropy.org/en/stable/io/ascii/
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

Control parameters SFA 2 User Manual

Control parameters

This appendix provides a systematic description of the control parameters accepted by SoFiA 2, grouped
by topic.

General

Parameter Type Values Default Description
pipeline.
pedantic

bool true, false true If set to true, the pipeline will terminate with an
error message if an unknown parameter name is
encountered in the input parameter file. If set to
false, unknown parameters will instead be ig-
nored.

pipeline.
threads

int ≥ 0 0 Sets the maximum number of parallel threads that
multi-threaded algorithms within SoFiA 2 are al-
lowed to use. If set to 0 (default value), then
the OMP_NUM_THREADS environment variable is
used to control the number of threads. If the
value equals (or exceeds) the number of available
threads, then all CPU cores will be utilised, which
minimises the runtime of the pipeline at the cost of
maximal CPU load.

pipeline.
verbose

bool true, false false Determines the level of output messages produced
by the pipeline. Additional warning messages can
be enabled by setting the value to true.

Input

Parameter Type Values Default Description
input.data string Name of the input data cube on which to run the

source finder. The absolute path to the data file
must be provided. If only the file name is speci-
fied, the pipeline will assume the file to be located
in the current working directory. Currently, only
the FITS format is supported.

input.gain string Name of an optional data cube containing the gain
across the image. If specified, the input data cube
will be divided by the gain cube prior to source pa-
rameterisation to ensure that the correct flux val-
ues are extracted. The gain cube must have the
same dimensions as the input data cube. The abso-
lute path to the gain file must be provided. If only
the file name is specified, the pipeline will assume
the file to be located in the current working direc-
tory. Currently, only the FITS format is supported.

33

SFA 2 User Manual Control parameters

input.invert bool true, false false If set to true, invert the data cube prior to pro-
cessing. This is useful when searching for nega-
tive rather than positive signals such as absorp-
tion lines. Note that all flux-related parameters and
maps will be inverted, too, in this case and hence
be positive rather than negative.

input.mask string File name of an input mask cube. Any additional
pixels detected by the source finder will be added
to the input mask. This can be useful if the results
from two different source finding runs should be
combined into a single mask. The mask cube must
have the same dimensions as the input data cube.
The absolute path to the mask file must be pro-
vided. If only the file name is specified, the pipeline
will assume the file to be located in the current
working directory. Currently, only the FITS for-
mat is supported.

input.noise string Name of an optional data cube containing the noise
levels across the image. If specified, the input
data cube will be divided by the noise cube prior
to source finding to ensure that a constant source
finding threshold can be applied. The noise cube
must have the same dimensions as the input data
cube. The absolute path to the noise file must be
provided. If only the file name is specified, the
pipeline will assume the file to be located in the
current working directory. Currently, only the
FITS format is supported. Note that either a noise
cube or aweights cube can be applied, but not both.

input.region list Region of the input data cube to be searched. Only
the specified region will be loaded into memory
and processed. A region must contain six comma-
separated integer values of the following format:
x_min, x_max, y_min, y_max, z_min, z_max (all in
units of pixels and 0-based). If no region is speci-
fied, then the entire data cube will be loaded.

input.weights string Name of an optional data cube containing the
weights across the image. If specified, the input
data cube will be multiplied by the square root of
the weights cube prior to source finding to ensure
that a constant source finding threshold can be ap-
plied. The weights cube must have the same di-
mensions as the input data cube. The absolute path
to the weights file must be provided. If only the
file name is specified, the pipeline will assume the
file to be located in the current working directory.
Currently, only the FITS format is supported. Note
that either a noise cube or a weights cube can be
applied, but not both.

34

Control parameters SFA 2 User Manual

Preconditioning

Parameter Type Values Default Description
contsub.
enable

bool true, false false If enabled, SoFiA 2 will try to subtract any resid-
ual continuum emission from the data cube prior
to source finding by fitting and subtracting a
polynomial of order 0 (offset) or 1 (offset +
slope). The order of the polynomial is defined by
contsub.order.

contsub.order int 0 . . . 1 0 Order of the polynomial to be used in continuum
subtraction if contsub.enable is set to true. Can
either be 0 for a simple offset or 1 for an offset +
slope. Higher orders are not currently supported.

contsub.
padding

int ≥ 0 3 The amount of additional padding (in channels) ap-
plied to either side of channels excluded from the
fit.

contsub.shift int ≥ 1 4 The number of channels by which the spectrum
will be shifted (symmetrically in both directions)
before self-subtraction.

contsub.
threshold

float ≥ 0.0 2.0 Relative clipping threshold. All channels with
a flux density > contsub.threshold times the
noise will be clipped and excluded from the poly-
nomial fit.

flag.auto string true,
false,
channels,
pixels

false If set to true, SoFiA 2 will attempt to automati-
cally flag spectral channels and spatial pixels af-
fected by interference or artefacts based on their
RMS noise level. If set to channels, only spec-
tral channels will be flagged. If set to pixels, only
spatial pixels will be flagged. If set to false, auto-
flagging will be disabled. Please see the user man-
ual for details.

flag.catalog string Path to a catalogue file containing two columns
that specify the longitude and latitude coordinates
of sky positions to be flagged in the native coordi-
nate system and units of the input data cube. The
two columns can be separated by spaces, tabulators
or commas. Also see flag.radius.

flag.log bool true, false false If set to true, write a list of the channels and pixels
flagged by the auto-flagger to a log file. Note that
if no channels or pixels were found to be in need
of flagging, then the log file will not be written ir-
respective of the value of flag.log.

flag.radius int ≥ 0 5 Radius around the sky positions listed in the cata-
logue provided by flag.catalog that should be
flagged. If 0, then only the nearest pixel to the
position will be flagged. Otherwise, pixels within
the specified radius around the nearest pixel will
be flagged.

35

SFA 2 User Manual Control parameters

flag.region list Region(s) to be flagged in the input data cube prior
to processing. The flagging region must contain
a multiple of six comma-separated integer values
of the following format: x_min, x_max, y_min,
y_max, z_min, z_max, … (all in units of pixels and
0-based). Pixels within those regions will be set to
blank in the input cube. If unset, no flagging will
occur.

flag.
threshold

float 5.0 Relative threshold in multiples of the standard de-
viation to be applied by the automatic flagging al-
gorithm. Only relevant if flag.auto is enabled.
Please see the documentation for details.

rippleFilter.
enable

bool true, false false If set to true, then the ripple filter will be applied
to the data cube prior to source finding. The fil-
ter works by measuring and subtracting either the
mean or median across a running window. This
can be useful if a DC offset or spatial/spectral rip-
ple is present in the data.

rippleFilter.
gridXY

int ≥ 0 0 Spatial grid separation in pixels for the running
window used in the ripple filter. The value must
be an odd integer value and specifies the spa-
tial step by which the window is moved. Al-
ternatively, it can be set to 0, in which case it
will default to half the spatial window size (see
rippleFilter.windowXY).

rippleFilter.
gridZ

int ≥ 0 0 Spectral grid separation in channels for the run-
ning window used in the ripple filter. The value
must be an odd integer value and specifies the
spectral step by which the window is moved. Al-
ternatively, it can be set to 0, in which case it
will default to half the spectral window size (see
rippleFilter.windowZ).

rippleFilter.
interpolate

bool true, false false If set to true, then themean ormedian valuesmea-
sured across the running window in the ripple fil-
ter will be linearly interpolated in between the grid
points. If set to false, the mean or median will be
subtracted from the entire grid cell without inter-
polation.

rippleFilter.
statistic

string mean,
median

median Controls whether the mean or median should be
measured and subtracted in the running window
of the ripple filter. The median is strongly recom-
mended, as it is more robust.

rippleFilter.
windowXY

int ≥ 1 31 Spatial size in pixels of the running window used
in the ripple filter. The size must be an odd integer
number.

rippleFilter.
windowZ

int ≥ 1 15 Spectral size in channels of the running window
used in the ripple filter. The size must be an odd
integer number.

36

Control parameters SFA 2 User Manual

scaleNoise.
enable

bool true, false false If set to true, noise scaling will be enabled. The
purpose of the noise scaling modules is to measure
the noise level in the input cube and then divide the
input cube by the noise. This can be used to correct
for spatial or spectral noise variations across the
input cube prior to running the source finder.

scaleNoise.
fluxRange

string positive,
negative,
full

negative Flux range to be used in the noise measurement.
If set to negative or positive, only pixels with
negative or positive flux will be used, respectively.
This can be useful to prevent real emission or arte-
facts from affecting the noise measurement. If set
to full, all pixels will be used in the noise mea-
surement irrespective of their flux.

scaleNoise.
gridXY

int ≥ 0 0 Size of the spatial grid across which noise measure-
ment window will be moved across the data cube.
It must be an odd integer value. If set to 0 instead,
the spatial grid size will default to half the spatial
window size.

scaleNoise.
gridZ

int ≥ 0 0 Size of the spectral grid across which noise mea-
surement window will be moved across the data
cube. It must be an odd integer value. If set to 0 in-
stead, the spectral grid size will default to half the
spectral window size.

scaleNoise.
interpolate

bool true, false false If set to true, linear interpolation will be used to
interpolate the measured local noise values in be-
tween grid points. If set to false, the entire grid
cell will instead be filled with the measured noise
value.

scaleNoise.
mode

string spectral,
local

spectral Noise scaling mode. If set to spectral, the noise
level will be determined for each spectral channel
by measuring the noise within each image plane.
This is useful for data cubes where the noise varies
with frequency. If set to local, the noise level will
be measured locally in window running across the
entire cube in all three dimensions. This is useful
for data cubes with more complex noise variations,
such as interferometric images with primary-beam
correction applied.

scaleNoise.
scfind

bool true, false false If true and global or local noise scaling is enabled,
then noise scaling will additionally be applied after
each smoothing operation in the S+C finder. This
might be useful in certain situations where large-
scale artefacts are present in interferometric data.
However, this feature should be used with great
caution, as it has the potential to do more harm
than good.

37

SFA 2 User Manual Control parameters

scaleNoise.
statistic

string std, mad,
gauss

mad Statistic to be used in the noise measurement pro-
cess. Possible values are std, mad and gauss for
standard deviation, median absolute deviation and
Gaussian fitting to the flux histogram, respectively.
Standard deviation is by far the fastest algorithm,
but it is also the least robust one with respect to
emission and artefacts in the data. Median abso-
lute deviation and Gaussian fitting are far more ro-
bust in the presence of strong, extended emission
or artefacts, but will usually take longer.

scaleNoise.
windowXY

int ≥ 0 25 Spatial size of the window used in determining the
local noise level. It must be an odd integer value.
If set to 0, the pipeline will use the default value
instead.

scaleNoise.
windowZ

int ≥ 0 15 Spectral size of the window used in determining
the local noise level. It must be an odd integer
value. If set to 0, the pipeline will use the default
value instead.

Source Finding

Parameter Type Values Default Description
scfind.enable bool true, false true If set to true, the Smooth + Clip (S+C) finder will

be enabled. The S+C finder operates by iteratively
smoothing the data cube with a user-defined set of
smoothing kernels, measuring the noise level on
each smoothing scale, and adding all pixels with an
absolute flux above a user-defined relative thresh-
old to the source detection mask.

scfind.
fluxRange

string positive,
negative,
full

negative Flux range to be used in the noise measurement.
If set to negative or positive, only pixels with
negative or positive flux will be used, respectively.
This can be useful to prevent real emission or arte-
facts from affecting the noise measurement. If set
to full, all pixels will be used in the noise mea-
surement irrespective of their flux.

scfind.
kernelsXY

list ≥ 0 0, 3, 6 Comma-separated list of spatial Gaussian kernel
sizes to apply. The individual kernel sizes must be
floating-point values and denote the full width at
half maximum (FWHM) of the Gaussian used to
smooth the data in the spatial domain. A value of
0 means that no spatial smoothing will be applied.

scfind.
kernelsZ

list ≥ 0 0, 3, 7, 15 Comma-separated list of spectral Boxcar kernel
sizes to apply. The individual kernel sizes must be
odd integer values of 3 or greater and denote the
full width of the Boxcar filter used to smooth the
data in the spectral domain. A value of 0 means
that no spectral smoothing will be applied.

38

Control parameters SFA 2 User Manual

scfind.
replacement

float 2.0 Before smoothing the data cube during an S+C iter-
ation, every pixel in the data cube that was already
detected in a previous iteration will be replaced
by this value multiplied by the original noise level
in the non-smoothed data cube, while keeping the
original sign of the data value. This feature can be
disabled altogether by specifying a value of < 0.

scfind.
statistic

string std, mad,
gauss

mad Statistic to be used in the noise measurement pro-
cess. Possible values are std, mad and gauss for
standard deviation, median absolute deviation and
Gaussian fitting to the flux histogram, respectively.
Standard deviation is by far the fastest algorithm,
but it is also the least robust one with respect to
emission and artefacts in the data. Median abso-
lute deviation and Gaussian fitting are far more ro-
bust in the presence of strong, extended emission
or artefacts, but will usually take longer.

scfind.
threshold

float ≥ 0.0 5.0 Flux threshold to be used by the S+C finder rela-
tive to the measured noise level in each smoothing
iteration. In practice, values in the range of about
3 to 5 have proven to be useful in most situations,
with lower values in that range requiring use of
the reliability filter to reduce the number of false
detections.

threshold.
enable

bool true, false false If set to true, the threshold finder will be enabled.
The threshold finder is a very basic source finder
that simply applies a fixed threshold (either abso-
lute or relative to the noise) to the original data
cube. It can be useful if a simple flux threshold is to
be applied to a pre-processed or filtered data cube.

threshold.
fluxRange

string positive,
negative,
full

negative Flux range to be used in the noise measurement.
If set to negative or positive, only pixels with
negative or positive flux will be used, respectively.
This can be useful to prevent real emission or arte-
facts from affecting the noise measurement. If set
to full, all pixels will be used in the noise mea-
surement irrespective of their flux.

threshold.
mode

string absolute,
relative

relative If set to absolute, the flux threshold of the thresh-
old finder will be interpreted as an absolute flux
threshold in the native flux unit of the data cube. If
set to relative, the threshold will be interpreted
in units of the noise level across the data cube.

39

SFA 2 User Manual Control parameters

threshold.
statistic

string std, mad,
gauss

mad Statistic to be used in the noise measurement pro-
cess if threshold.mode is set to relative. Pos-
sible values are std, mad and gauss for standard
deviation, median absolute deviation and Gaussian
fitting to the flux histogram, respectively. Standard
deviation is by far the fastest algorithm, but it is
also the least robust one with respect to emission
and artefacts in the data. Median absolute devia-
tion and Gaussian fitting are far more robust in the
presence of strong, extended emission or artefacts,
but will usually take longer.

threshold.
threshold

float ≥ 0.0 5.0 Flux threshold to be applied by the threshold
finder. Depending on the threshold.mode pa-
rameter, this can either be absolute (in native flux
units of the data cube) or relative to the noise level
of the cube.

Linking

Parameter Type Values Default Description
linker.enable bool true, false true If true, then the linker will be run to merge the

pixels detected by the source finder into coherent
detections that can then be parameterised and cat-
alogued. If false, the pipeline will be terminated
after source finding, and no catalogue or source
products will be created. Disabling the linker can
be useful if only the raw mask from the source
finder is needed.

linker.
keepNegative

bool true, false false If set to true, then the linkerwill not discard detec-
tions with negative flux. Reliability filtering must
be disabled for negative sources to be retained.
Also note that negative sources will not appear in
moment 1 and 2 maps. This option should only
ever be used for testing or debugging purposes, but
never in production mode.

linker.
maxFill

float ≥ 0.0 0.0 Maximum allowed filling factor of a source within
its rectangular bounding box, defined as the num-
ber of spatial and spectral pixels that make up
the source divided by the number of pixels in the
bounding box. The default value of 0.0 disables
maximum filling factor filtering.

linker.
maxPixels

int ≥ 0 0 Maximum allowed number of spatial and spectral
pixels that a source must not exceed. The default
value of 0 disables maximum size filtering.

linker.
maxSizeXY

int ≥ 0 0 Maximum size of sources in the spatial dimension
in pixels. Sources that exceed this limit will be dis-
carded by the linker. If the value is set to 0, maxi-
mum size filtering will be disabled.

40

Control parameters SFA 2 User Manual

linker.
maxSizeZ

int ≥ 0 0 Maximum size of sources in the spectral dimension
in pixels. Sources that exceed this limit will be dis-
carded by the linker. If the value is set to 0, maxi-
mum size filtering will be disabled.

linker.
minFill

float ≥ 0.0 0.0 Minimum allowed filling factor of a source within
its rectangular bounding box, defined as the num-
ber of spatial and spectral pixels that make up
the source divided by the number of pixels in the
bounding box. The default value of 0.0 disables
minimum filling factor filtering.

linker.
minPixels

int ≥ 0 0 Minimum allowed number of spatial and spectral
pixels that a source must have. The default value
of 0 disables minimum size filtering.

linker.
minSizeXY

int ≥ 1 5 Minimum size of sources in the spatial dimension
in pixels. Sources that fall below this limit will be
discarded by the linker.

linker.
minSizeZ

int ≥ 1 5 Minimum size of sources in the spectral dimension
in pixels. Sources that fall below this limit will be
discarded by the linker.

linker.
positivity

bool true, false false If set to true, then the linker will only merge pos-
itive pixels and discard all negative pixels by re-
moving them from the mask. This option should
be used with extreme caution and will render the
reliability filter useless. It can be useful, though,
if there are significant negative artefacts such as
residual sidelobes in the data.

linker.
radiusXY

int ≥ 1 1 Maximummerging length in the spatial dimension.
Pixels with a separation of up to this value will be
merged into the same source.

linker.
radiusZ

int ≥ 1 1 Maximum merging length in the spectral dimen-
sion. Pixels with a separation of up to this value
will be merged into the same source.

Reliability

Parameter Type Values Default Description
reliability.
autoKernel

bool true, false false If true, SoFiA 2 will try to automatically deter-
mine the optimal reliability kernel scale factor by
iteratively increasing the kernel size until the ab-
solute value of the median of the Skellam distribu-
tion decreases below reliability.tolerance.
If the algorithm is not able to converge after
reliability.iterations steps, then the default
value of reliability.scaleKernel will be used
instead.

41

SFA 2 User Manual Control parameters

reliability.
catalog

string Path to a file containing positions on the sky to be
excluded from the reliability analysis. The filemust
contain two columns separated by a space, tabula-
tor or comma that specify the longitude and lati-
tude of the position to be excluded in the native
WCS coordinates and units of the input FITS file.
Negative detections that contain any of those po-
sitions within their bounding box will be excluded
from the reliability analysis, although theywill still
show up in the reliability plot.

reliability.
debug

bool true, false false If set to true and the reliability module is enabled,
then two catalogue files containing relevant reli-
ability parameters of negative and positive detec-
tions are created for debugging purposes. The cat-
alogues will be written in VOTable format.

reliability.
enable

bool true, false false If set to true, reliability calculation and filtering
will be enabled. This will determine the reliabil-
ity of each detection with positive total flux by
comparing the density of positive and negative de-
tections in a three-dimensional parameter space.
Sources below the specified reliability threshold
will then be discarded. Note that this will require
a sufficient number of negative detections, which
can usually be achieved by setting the source find-
ing threshold to somewhere around 3 to 4 times the
noise level.

reliability.
iterations

int ≥ 1 30 Maximum number of iterations allowed for the
reliability kernel auto-scaling algorithm to con-
verge. If convergence cannot be achieved, then
reliability.scaleKernel will instead be ap-
plied.

reliability.
minPixels

int ≥ 0 0 Minimum total number of spatial and spectral pix-
els within the sourcemask for detections to be con-
sidered reliable. The reliability of any detection
with fewer pixels will be set to zero by default.

reliability.
minSNR

float ≥ 0.0 3.0 Lower signal-to-noise limit for reliable sources.
Detections that fall below this threshold will be
deemed unreliable and assigned a reliability of 0.
The value denotes the integrated signal-to-noise
ratio, SNR = Fsum/(RMS

√
NΩ), of the source,

where Ω is the solid angle (in pixels) of the point
spread function of the data, N is the number of
spatial and spectral pixels of the source, Fsum is
the summed flux density and RMS is the local RMS
noise level (assumed to be constant). Note that the
spectral resolution is assumed to be equal to the
channel width.

42

Control parameters SFA 2 User Manual

reliability.
parameters

list peak,
sum,
mean,
chan, pix,
fill, std,
skew,
kurt

peak,
sum,
mean

Parameter space to be used in deriving the relia-
bility of detections. This must be a list of param-
eters the number of which defines the dimension-
ality of the parameter space. Possible values are
peak for the peak flux density, sum for the summed
flux density, mean for mean flux density, chan for
the number of spectral channels, pix for the total
number of spatial and spectral pixels, fill for the
filling factor, std for the standard deviation, skew
for the skewness and kurt for the kurtosis across
the source mask. Flux densities will be divided by
the global RMS noise level. peak, sum, mean, pix
and fill will be logarithmic, all other parameters
linear.

reliability.
plot

bool true, false true If set to true, diagnostic plots (in EPS format) will
be created to allow the quality of the reliability es-
timation to be assessed. It is advisable to generate
and inspect these plots to ensure that the outcome
of the reliability filtering procedure is satisfactory.

reliability.
scaleKernel

float 0.4 When estimating the density of positive and neg-
ative detections in parameter space, the size of the
Gaussian kernel used in this process is determined
from the covariance of the distribution of negative
detections in parameter space. This parameter set-
ting can be used to scale that kernel by a constant
factor.

reliability.
threshold

float 0.0 . . . 1.0 0.9 Reliability threshold in the range of 0 to 1. Sources
with a reliability below this threshold will be dis-
carded.

reliability.
tolerance

float 0.05 Convergence tolerance for the reliability kernel
auto-scaling algorithm. Convergence is achieved
when the absolute value of the median of the Skel-
lam distribution drops below this tolerance.

Mask Dilation

Parameter Type Values Default Description
dilation.
enable

bool true, false false Set to true to enable sourcemask dilationwhereby
the mask of each source will be grown outwards
until the resulting increase in integrated flux drops
below a given threshold or the maximum number
of iterations is reached.

dilation.
iterationsXY

int ≥ 1 10 Sets the maximum number of spatial iterations
for the mask dilation algorithm. Once this num-
ber of iterations has been reached, mask dila-
tion in the spatial plane will stop even if the
flux increase still exceeds the threshold set by
dilation.threshold.

43

SFA 2 User Manual Control parameters

dilation.
iterationsZ

int ≥ 1 5 Sets the maximum number of spectral iterations
for the mask dilation algorithm. Once this num-
ber of iterations has been reached, mask dila-
tion along the spectral axis will stop even if the
flux increase still exceeds the threshold set by
dilation.threshold.

dilation.
threshold

float 0.001 If a positive value is provided, mask dilation will
end when the increment in the integrated flux dur-
ing a single iteration drops below this value times
the total integrated flux (from the previous itera-
tion), or when the maximum number of iterations
has been reached. Specifying a negative threshold
will disable flux checking altogether and always
carry out the maximum number of iterations.

Parameterisation

Parameter Type Values Default Description
parameter.
enable

bool true, false true If set to true, the parametrisation module will be
enabled to measure the basic parameters of each
detected source.

parameter.
offset

bool true, false false If set to false and a region of the data cube is read
in using the input.region parameter, then the
position parameters x, y, z, x_min, x_max, y_min,
y_max, z_min and z_max in the source catalogue
will be specified relative to the region. If set to
true, the position parameters will instead be rel-
ative to the full cube. Note that the auto-flagging
log file will also adhere to this setting.

parameter.
physical

bool true, false false If set to true, SoFiA 2 will attempt to con-
vert relevant parameters to physical units. This
involves conversion of channel widths to fre-
quency/velocity units and division of flux-based
parameters by the solid angle of the beam. For this
to work, the relevant header parameters, including
CTYPE3, CDELT3, BMAJ and BMIN, must have been
correctly set. It is further assumed that the beam
does not vary with frequency or position.

parameter.
prefix

string SoFiA Prefix to be used in source names. The default pre-
fix is SoFiA, and the resulting default source name
is SoFiA Jhhmmss.ss-ddmmss.s for J2000 equa-
torial coordinates (and likewise for other coordi-
nate types).

parameter.wcs bool true, false true If set to true, SoFiA will attempt to convert the
source centroid position (x, y, z) to world coor-
dinates using the WCS information stored in the
header. In addition, spectra andmoment map units
will be converted from channels to WCS units as
well.

44

Control parameters SFA 2 User Manual

Output

Parameter Type Values Default Description
output.
directory

string Full path to the directory to which all output files
will be written. If unset, the directory of the input
data cube will be used by default.

output.
filename

string File name that will be used as the template for all
output files. For example, if output.filename
= my_data, then the output files will be named
my_data_cat.xml, my_data_mom0.fits, etc. If
unset, the name of the input data cube will be used
as the file name template by default.

output.
marginCubelets

int ≥ 0 10 Margin (in pixels) around detections to be added
when creating cubelets, moment maps and spectra
of individual sources. The same margin will be ap-
plied to all axes of the cube. A value of 0 will create
tight cutouts without any extra margin, thus min-
imising file sizes. The default is 10 pixels.

output.
overwrite

bool true, false true If true, existing output files will be overwritten
without warning. If false, SoFiA 2 will refuse to
run if any of the output files and directories to be
created already exists.

output.
thresholdMom12

float 0.0 If output.cubelets is enabled, then the mo-
ment 1 and 2 maps for each individual detection
will be created using only those spectral channels
where the flux density exceeds this value times
the local RMS noise level. For example, setting
output.thresholdMom12 to a value of 3.0 would
set a 3-sigma flux density threshold for moments 1
and 2. Note that this setting has no effect on mo-
ment 0 maps or global moment 1 and 2 maps.

output.
writeCatASCII

bool true, false true If set to true, an output source catalogue will be
produced in human-readable ASCII format. The
catalogue file will have the suffix _cat.txt.

output.
writeCatSQL

bool true, false false If set to true, an output source catalogue will be
produced in SQL format. The catalogue file will
have the suffix _cat.sql. The SQL catalogue can
be imported into any SQL-compatible database. A
new data table containing the source parameters,
named SoFiA-Catalogue by default, will be gen-
erated.

output.
writeCatXML

bool true, false true If set to true, an output source catalogue will be
produced in VO-compatible XML format. The cat-
alogue file will have the suffix _cat.xml.

45

SFA 2 User Manual Control parameters

output.
writeCubelets

bool true, false false If set to true, then individual source products for
each detected sourcewill be created, including sub-
cubes, masks, moment maps and integrated spec-
tra. The source products will be written to a sub-
directory with the suffix _cubelets. Each source
product will be labelled with the source ID number
for identification.

output.
writeFiltered

bool true, false false If set to true and any input filtering algorithm is
enabled, then a data cube containing the filtered
data will be written in FITS format. The filtered
cube will have the suffix _filtered.fits.

output.
writeKarma

bool true, false false If set to true then a Karma annotation file will be
created that contains the source IDs of all detec-
tions in the catalogue. This can be used to display
source IDs on output images in Karma packages
such as kvis. The annotation file will have the suf-
fix _cat.ann.

output.
writeMask

bool true, false false If set to true, then a data cube containing the
final source mask produced by the source finder
will be written in FITS format. The pixel values
in the source mask will correspond to the respec-
tive source ID numbers in the catalogue. The mask
cube will have the suffix _mask.fits.

output.
writeMask2d

bool true, false false If set to true, then an image containing a two-
dimensional projection of the 3D mask cube will
be written in FITS format. The 2D mask image will
have the suffix _mask-2d.fits. Note that some
sources may be hidden behind others in this 2D
projection.

output.
writeMoments

bool true, false false If set to true, then images of the spectral moments
0, 1 and 2 and the number of channels in each pixel
of the moment 0 map will be written in FITS for-
mat. The maps will have the suffix _mom0.fits,
_mom1.fits, _mom2.fits and _chan.fits. Note
that moments 1 and 2 and the number of channels
will not be produced if the input data cube is only
two-dimensional.

output.
writeNoise

bool true, false false If set to true and local noise scaling is enabled,
then a data cube containing the measured local
noise values will be written in FITS format. The
noise cube will have the suffix _noise.fits. If
spectral noise scaling is enabled, then the mea-
sured noise in each channel (in native data cube
flux units) will be written to a plain text file with
the suffix _noise.txt.

output.
writePV

bool true, false false If set to true then position-velocity diagrams
along the kinematic major and minor axis of the
data cube and mask cube of each detection will be
created. Note that output.writeCubelets must
also be set to true.

46

Control parameters SFA 2 User Manual

output.
writeRawMask

bool true, false false If set to true, then a data cube containing the
raw, binary source mask produced by the source
finder prior to linking will be written in FITS for-
mat. The raw mask cube will have the suffix
_mask-raw.fits.

47

SFA 2 User Manual File and directory structure

File and directory structure

The entire SoFiA 2 pipeline is written in C, and the source code is highly modular thanks to an overall
object-oriented approach. The source code of the main pipeline is stored in the file sofia.c in the base
directory, while the rest of the source code can be found in the src/ directory. Files defining classes start
with a capital letter, e.g. DataCube.c, while procedural source code is found in files starting with a small
letter, e.g. statistics_flt.c. All public declarations are stored in header files of the same name, e.g.
DataCube.h.

The basic file and directory structure of SoFiA 2 is outlined in the following table. The file and directory
names are hyperlinks to the corresponding target in the SoFiA 2 GitLab repository.

File name Description
sofia.c Actual SoFiA 2 pipeline.
template_par_file.par Template parameter file.
compile.sh Shell script for compiling SoFiA 2.
README.md Basic information and installation instructions.
LICENSE Licence information.
src/ Directory containing source code.

common.c Functions commonly used by all source files.
statistics_dbl.c Basic statistical functions for type double.
statistics_flt.c Basic statistical functions for type float.
Array_dbl.c Class for data arrays of type double.
Array_siz.c Class for data arrays of type size_t.
Catalog.c Class for storing source catalogues.
DataCube.c Class for handling FITS data cubes.
Header.c Class for storing FITS header information.
LinkerPar.c Class for collecting object properties during linking.
Map.c Class for storing key–value pairs of type size_t.
Matrix.c Class for handling matrices.
Parameter.c Class for storing SoFiA 2 parameter settings.
Path.c Class for handling file names and paths.
Source.c Class for storing the properties of a detected source.
Stack.c Class for implementing a basic stack of type size_t.
String.c Class for storing and handling character strings.
Table.c Class for reading tabulated data from file.
WCS.c Class for handling WCS conversions.
templates/ Directory containing function and class templates.

statistics.c Template for basic statistical functions.
Array.c Template for data array class.
Array_maketemplate.sh Shell script for instantiating data array templates.
statistics_maketemplate.sh Shell script for instantiating statistics templates.

48

https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/sofia.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/template_par_file.par
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/compile.sh
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/README.md
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/LICENSE
https://gitlab.com/SoFiA-Admin/SoFiA-2/tree/master/src
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/common.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/statistics_dbl.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/statistics_flt.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Array_dbl.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Array_siz.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Catalog.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/DataCube.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Header.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/LinkerPar.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Map.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Matrix.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Parameter.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Path.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Source.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Stack.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/String.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/Table.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/WCS.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/tree/master/src/templates
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/templates/statistics.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/templates/Array.c
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/templates/Array_maketemplate.sh
https://gitlab.com/SoFiA-Admin/SoFiA-2/blob/master/src/templates/statistics_maketemplate.sh

References SFA 2 User Manual

Return codes

Upon termination SoFiA 2 will provide a return code that can be used to analyse the cause of any error
that occurred during execution of the pipeline. A list of return codes currently supported by SoFiA 2 can
be found in the following table.

Code Symbol Description
0 ERR_SUCCESS Successful run.
1 ERR_FAILURE An unspecified error occurred.
2 ERR_NULL_PTR A NULL pointer was encountered.
3 ERR_MEM_ALLOC A memory allocation error occurred. This could indicate that the data cube is

too large for the amount of memory available on the machine.
4 ERR_INDEX_RANGE An array index was found to be out of range.
5 ERR_FILE_ACCESS An error occurred while trying to read or write a file or check if a directory or

file is accessible.
6 ERR_INT_OVERFLOW An integer overflow occurred.
7 ERR_USER_INPUT The pipeline was aborted due to invalid user input. This could be due to an

invalid parameter setting or the wrong input file being provided.
8 ERR_NO_SRC_FOUND No specific error occurred, but no sources were detected either.

References

Banks T., Dodd R. J., Sullivan D. J., 1995, MNRAS, 272, 821

Derriere S., et al., 2005, An IVOA Standard for Unified Content Descriptors Version 1.10, IVOA Recom-
mendation 19 August 2005 (arXiv:1110.0525)

Pence W. D., Chiappetti L., Page C. G., Shaw R. A., Stobie E., 2010, A&A, 524, A42

Serra P., Jurek R., Flöer L., 2012, PASA, 29, 296

Serra P., et al., 2015, MNRAS, 448, 1922

Westmeier T., Jurek R., Obreschkow D., Koribalski B. S., Staveley-Smith L., 2014, MNRAS, 438, 1176

Westmeier T., et al., 2021, MNRAS, 506, 3962

49

http://dx.doi.org/10.1093/mnras/272.4.821
http://arxiv.org/abs/1110.0525
http://dx.doi.org/10.1051/0004-6361/201015362
http://dx.doi.org/10.1071/AS11065
http://dx.doi.org/10.1093/mnras/stv079
http://dx.doi.org/10.1093/mnras/stt2266
http://dx.doi.org/10.1093/mnras/stab1881

SFA 2 User Manual Index

Index
A
absorption . 8, 31
auto-kernel .see reliability

C
catalogue . 27
continuum image . 31
continuum subtraction . 10
control parameter . 6, 33

general . 33
input . 33
linking . 40
mask dilation . 43
output . 45
parameterisation . 44
preconditioning . 35
reliability . 41
source finding . 38

cubelet . 28

D
data cube . 8
data flagging . 10
data preconditioning . 10
Docker . 6

E
ellipse fitting . 24
error . 21, 23
error code . 49
example parameter file . 30

F
false detection . 15, 16
filtered cube . 27
flag . see quality flag
flagging . 10
flux . 22
flux density . 22

G
gain cube . 9

I
input . 8
installation . 4, 48
integrated flux . 22
integrated spectrum . 28
inverted data . 8

K
kinematic major axis . 24

L
line width . 23
linking . 15

M
mask cube . 8, 27, 28
mask dilation . 20
merging . 15
moment map . 27, 28

N
noise cube . 8, 27
noise normalisation . 8, 11

O
orientation . 24
output product . 27

P
parameter file see control parameter
parameter space . 16
parameterisation . 21

ellipse fitting . 24
flux . 22
flux density . 22
line width . 23
position . 21

peak flux density . 22
pipeline . 6
position . 21
preconditioning . 10
Python . 32

Q
quality flag . 15

R
region . 8, 31
reliability . 16

auto-kernel . 18
return code . 49
ripple filter . 11

S
S +C finder . 13
signal-to-noise threshold 18
Singularity . 6
size . 24
Skellam parameter . 18
smoothing kernel . 13
source catalogue . 27
source characterisation . . . see parameterisation

50

Index SFA 2 User Manual

source finding . 13
source location . 21
source orientation . 24
source parameter see parameterisation
source position . 21
source size . 24
spectrum . 28
subregion . 8, 31

T
threshold finder . 13

U
UCD . 27
uncertainty . 21, 23
Unified Content Descriptor 27
user settings see control parameter

W
weights cube . 9

51

	Introduction
	Installation
	Standard installation procedure
	Container formats

	Parameter files
	Running the pipeline

	Input data sets
	Data cube
	Mask cube
	Noise cube
	Weights cube
	Gain cube

	Preconditioning
	Data flagging
	Continuum subtraction
	Noise normalisation
	Ripple filter

	Source finding
	The S+C finder

	Linking of detected pixels
	Reliability calculation
	Algorithm
	Parameter space
	SNR and pixel thresholds
	Kernel size optimisation
	Dealing with artefacts

	Mask dilation
	Source parameterisation
	Source position
	Flux density
	Flux
	Line widths
	Ellipse fitting
	Kinematic major axis

	Output products
	Source catalogue
	Image products
	Cubelets
	Diagnostic output

	Tips and tricks
	Example parameter file
	2D images
	Absorption lines
	Extracting a sub-cube
	Source catalogue in Python

	Control parameters
	General
	Input
	Preconditioning
	Source Finding
	Linking
	Reliability
	Mask Dilation
	Parameterisation
	Output

	File and directory structure
	Return codes
	References
	Index

