Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
4
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Switch to GitLab Next
Sign in / Register
Toggle navigation
R
R for Excel Users Workshop
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
0
Merge Requests
0
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Package Registry
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Sean Manzi
R for Excel Users Workshop
Commits
4ced2caa
Commit
4ced2caa
authored
Nov 05, 2019
by
Sean Manzi
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated files for upload
parent
1cb6fc3c
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
564 additions
and
0 deletions
+564
-0
R_For_Excel_Users_Pres_V1.pdf
R_For_Excel_Users_Pres_V1.pdf
+0
-0
analysisScriptV1.R
analysisScriptV1.R
+204
-0
analysisScriptV2.R
analysisScriptV2.R
+360
-0
No files found.
R_For_Excel_Users_Pres_V1.pdf
0 → 100644
View file @
4ced2caa
File added
analysisScriptV1.R
0 → 100644
View file @
4ced2caa
#[p]
#Inititate the required libraries
#[12]
library
(
psych
)
library
(
plyr
)
library
(
reshape2
)
library
(
ggplot2
)
#[F]
#Read in the data
#[4]
data
<-
read.csv
(
"workshopRawData.csv"
)
#[E]
#Convert dates
#[11]
data
$
Referral_Date
<-
as.Date
(
data
$
Referral_Date
)
data
$
Treat_Date
<-
as.Date
(
data
$
Treat_Date
)
#[L]
#Check the data for errors
#Missing data
#[6]
id_na
<-
sum
(
is.na
(
data
$
ID
))
age_na
<-
sum
(
is.na
(
data
$
Age
))
ref_na
<-
sum
(
is.na
(
data
$
Referral_Date
))
trt_na
<-
sum
(
is.na
(
data
$
Treat_Date
))
ser_na
<-
sum
(
is.na
(
data
$
Service_Name
))
#[A]
#Category typos, ommissions and duplications
#[16]
id_uni
<-
unique
(
data
$
ID
)
age_uni
<-
unique
(
data
$
Age
)
ser_uni
<-
unique
(
data
$
Service_Name
)
id_dup
<-
count
(
data
,
'ID'
)
id_dup_sub
<-
subset
(
id_dup
,
id_dup
$
freq
>
1
)
dups
<-
id_dup_sub
$
ID
dupRows
<-
data
[
data
$
ID
%in%
dups
,]
#[C]
#Incorrectly entered date stamps
#[9]
dataTime
<-
data
dataTime
$
time_check
<-
dataTime
$
Treat_Date
-
dataTime
$
Referral_Date
time_sub
<-
subset
(
dataTime
,
dataTime
$
time_check
<
0
)
#[M]
#Swap incorrectly entered date stamps
#[2]
time_rows
<-
as.integer
(
row.names
(
time_sub
))
for
(
i
in
1
:
length
(
time_rows
)){
# print(c("Before ",data[time_rows[i],]))
a
<-
data
[
time_rows
[
i
],
3
]
b
<-
data
[
time_rows
[
i
],
4
]
data
[
time_rows
[
i
],
3
]
<-
b
data
[
time_rows
[
i
],
4
]
<-
a
# print(c("After ",data[time_rows[i],]))
}
#[J]
#Remove patients without team entries
#[13]
omiss
<-
subset
(
data
,
data
$
Service_Name
==
""
)
omiss_rows
<-
as.integer
(
row.names
(
omiss
))
dataClean
<-
data
[
-
c
(
omiss_rows
),]
#[O]
#Calculate the patient wait times
#[8]
dataClean
$
waitTime
<-
as.integer
(
dataClean
$
Treat_Date
-
dataClean
$
Referral_Date
)
waitDes
<-
describe
(
dataClean
$
waitTime
)
#[H]
#Subset wait time data by month
#[7]
startDate
<-
min
(
dataClean
$
Referral_Date
)
endDate
<-
max
(
dataClean
$
Treat_Date
,
na.rm
=
TRUE
)
numMonths
<-
length
(
seq
(
from
=
startDate
,
to
=
endDate
,
by
=
'month'
))
months
<-
seq
(
from
=
startDate
,
to
=
endDate
,
by
=
'month'
)
monthData
<-
list
()
waitList
<-
list
()
for
(
i
in
1
:
(
numMonths
-1
)){
a
<-
dataClean
[
which
(
dataClean
$
Treat_Date
>
months
[
i
+1
]
&
dataClean
$
Referral_Date
<
months
[
i
+1
]),]
monthData
[[
i
]]
<-
a
waitList
[[
i
]]
<-
data.frame
(
a
$
waitTime
,
a
$
Service_Name
)
}
#[N]
#Convert wait list into single multilevel dataframe
#[5]
dfWait
<-
melt
(
waitList
)
dfWait
<-
droplevels
(
dfWait
)
#[K]
#Patient numbers barchart and descriptives
#[14]
waitListTab
<-
table
(
dfWait
$
L1
)
waitListDf
<-
as.data.frame
(
waitListTab
)
waitListDes
<-
describe
(
waitListDf
$
Freq
)
barplot
(
waitListTab
,
xlab
=
"Month"
,
ylab
=
"Frequency"
,
main
=
"Number of patients on the waiting list"
,
cex.names
=
0.8
)
#[G]
#Patient numbers by team barchart and descriptives
#[10]
teamWaitListTab
<-
table
(
dfWait
$
a.Service_Name
,
dfWait
$
L1
)
teamWaitListDf
<-
as.data.frame
(
teamWaitListTab
)
teamWaitListDes
<-
describeBy
(
teamWaitListDf
$
Freq
,
teamWaitListDf
$
Var1
)
barplot
(
teamWaitListTab
,
beside
=
TRUE
,
xlab
=
"Month"
,
ylab
=
"Frequency"
,
main
=
"Number of patients on the waiting list by team"
,
cex.names
=
0.8
,
legend
=
TRUE
,
args.legend
=
list
(
x
=
"topright"
,
legend
=
c
(
"Team 1"
,
"Team 2"
)))
abline
(
h
=
mean
(
teamWaitListTab
[
1
,]))
abline
(
h
=
mean
(
teamWaitListTab
[
2
,]),
lty
=
2
)
#[I]
#Patient waiting times boxplot and descriptives by month
#[1]
timeWaitTimePlot
<-
qplot
(
factor
(
L1
),
value
,
data
=
dfWait
,
geom
=
'boxplot'
)
timeWaitTimePlot
+
xlab
(
"Month"
)
+
ylab
(
"Waiting time (days)"
)
+
ggtitle
(
"Patient waiting times for service X over time"
)
waitTimeDes
<-
describeBy
(
dfWait
$
value
,
group
=
dfWait
$
L1
)
#[B]
#Patient waiting times boxplot and descriptives by team
#[3]
teamWaitTimePlot
<-
qplot
(
a.Service_Name
,
value
,
data
=
dfWait
,
geom
=
'boxplot'
)
teamWaitTimePlot
+
xlab
(
"Month"
)
+
ylab
(
"Waiting time (days)"
)
+
ggtitle
(
"Patient waiting times for service by team"
)
teamWaitTimeDes
<-
describeBy
(
dfWait
$
value
,
group
=
dfWait
$
a.Service_Name
)
#[D]
#Patient waiting times boxplot and descriptives by month and team
#[15]
dfWait
$
ServTime
<-
interaction
(
dfWait
$
a.Service_Name
,
dfWait
$
L1
)
breaks
<-
c
(
"Team1.1"
,
"Team1.2"
,
"Team1.3"
,
"Team1.4"
,
"Team1.5"
,
"Team1.6"
,
"Team1.7"
,
"Team1.8"
,
"Team1.9"
,
"Team1.10"
,
"Team1.11"
,
"Team1.12"
,
"Team1.13"
,
"Team1.14"
,
"Team1.15"
,
"Team1.16"
,
"Team1.17"
,
"Team1.18"
,
"Team1.19"
,
"Team1.20"
,
"Team1.21"
,
"Team1.22"
,
"Team1.23"
)
lab
<-
as.character
(
seq
(
1
,
23
))
teamTimeWaitTimePlot
<-
qplot
(
factor
(
ServTime
),
value
,
data
=
dfWait
,
fill
=
a.Service_Name
,
geom
=
'boxplot'
)
teamTimeWaitTimePlot
+
scale_x_discrete
(
name
=
"Month"
,
breaks
=
breaks
,
labels
=
lab
)
+
ylab
(
"Waiting Time"
)
teamTimeWaitTimeDes
<-
describeBy
(
dfWait
$
value
,
group
=
list
(
dfWait
$
a.Service_Name
,
dfWait
$
L1
))
analysisScriptV2.R
0 → 100644
View file @
4ced2caa
#[B]
#Inititate the required libraries
#[7]
library
(
psych
)
library
(
plyr
)
library
(
reshape2
)
library
(
ggplot2
)
#[C]
#Read in the data
#[13]
data
<-
read.csv
(
"workshopRawData.csv"
)
#[G]
#Get list of column names
#[2]
name_list
<-
function
(
data
){
nList
<-
as.list
(
colnames
(
data
))
print
(
"The structure of the data is as follows"
)
print
(
"Any dates will need to be converted from factor to Date format"
)
str
(
data
)
return
(
nList
)
}
nList
<-
name_list
(
data
)
#Inputs: dataframe
#[I]
#Convert dates
#[15]
convertDates
<-
function
(
data
,
cols
){
for
(
i
in
1
:
length
(
cols
)){
data
[[
cols
[
i
]]]
<-
as.Date
(
data
[[
cols
[
i
]]])
print
(
paste
(
"data column"
,
cols
[
i
],
"converted to Date format"
))
}
return
(
data
)
}
data
<-
convertDates
(
data
,
c
(
3
,
4
))
#Inputs: dataframe, columns to be converted to date format
#[F]
#Check the data for errors
#Missing data
#[3]
missing_data
<-
function
(
data
){
colsN
<-
colnames
(
data
)
cols
<-
seq
(
1
,
length
(
colsN
))
missList
<-
list
()
for
(
i
in
1
:
length
(
cols
)){
missList
[
i
]
<-
sum
(
is.na
(
data
[[
cols
[
i
]]]))
if
(
missList
[
i
]
>
0
){
print
(
paste
(
"In column"
,
cols
[
i
],
"there are"
,
missList
[
i
],
"missing data points"
))
}
}
return
(
missList
)
}
missList
<-
missing_data
(
data
)
#Inputs: dataframe
#[K]
#Category typos, ommissions and duplications
#[9]
typo_check
<-
function
(
data
,
cols
){
typoList
<-
list
()
for
(
i
in
1
:
length
(
cols
)){
typoList
[[
i
]]
<-
unique
(
data
[[
cols
[
i
]]])
print
(
paste
(
"There are"
,
length
(
typoList
[[
i
]]),
"unique entries in column"
,
cols
[
i
]))
}
return
(
typoList
)
}
typoList
<-
typo_check
(
data
,
c
(
1
,
2
,
5
))
#Inputs: dataframe, columns to check for number of unique categories
dup_check
<-
function
(
data
,
nList
,
idCol
){
idName
<-
nList
[[
idCol
]]
id_dup
<-
count
(
data
,
idName
)
id_dup_sub
<-
subset
(
id_dup
,
id_dup
$
freq
>
1
)
dups
<-
id_dup_sub
[[
idCol
]]
dupRows
<-
data
[
data
[[
idCol
]]
%in%
dups
,]
print
(
"The rows with duplicated ID's are..."
)
print
(
dupRows
)
return
(
dupRows
)
}
dupRows
<-
dup_check
(
data
,
nList
,
1
)
#Inputs: dataframe, list of column names, column containing unique ID's
#[M]
#Incorrectly entered date stamps
#[11]
date_check
<-
function
(
data
){
dataTime
<-
data
dataTime
$
time_check
<-
dataTime
$
Treat_Date
-
dataTime
$
Referral_Date
time_sub
<-
subset
(
dataTime
,
dataTime
$
time_check
<
0
)
print
(
"The following rows likely have incorrectly entered date stamps..."
)
print
(
time_sub
)
return
(
time_sub
)
}
time_sub
<-
date_check
(
data
)
#Inputs: dataframe
#[L]
#Swap incorrectly entered date stamps
#[14]
correct_dates
<-
function
(
data
,
time_sub
,
dColOne
,
dColTwo
){
time_rows
<-
as.integer
(
row.names
(
time_sub
))
for
(
i
in
1
:
length
(
time_rows
)){
print
(
"The entries"
)
print
(
data
[
time_rows
[
i
],])
a
<-
data
[
time_rows
[
i
],
dColOne
]
b
<-
data
[
time_rows
[
i
],
dColTwo
]
data
[
time_rows
[
i
],
dColOne
]
<-
b
data
[
time_rows
[
i
],
dColTwo
]
<-
a
print
(
"Have been changed to"
)
print
(
data
[
time_rows
[
i
],])
}
return
(
data
)
}
data
<-
correct_dates
(
data
,
time_sub
,
3
,
4
)
#Inputs: dataframe,
#subset dataframe of rows with incorrectly entered timestamps,
#column with referral date, column with treatment date
#[H]
#Remove patients without team entries
#[1]
omission_removal
<-
function
(
data
,
cols
,
targets
){
for
(
i
in
1
:
length
(
cols
)){
for
(
j
in
1
:
length
(
targets
)){
omiss
<-
subset
(
data
,
data
[[
cols
[
i
]]]
==
targets
[
j
])
omiss_rows
<-
as.integer
(
row.names
(
omiss
))
dataClean
<-
data
[
-
c
(
omiss_rows
),]
print
(
"The following rows have been removed"
)
print
(
data
[
omiss_rows
,])
}
}
return
(
dataClean
)
}
dataClean
<-
omission_removal
(
data
,
c
(
5
),
c
(
""
))
#Inputs: dataframe, column(s) to check for targets, target(s)
#[E]
#Calculate the patient wait times
#[18]
calc_wait
<-
function
(
dataClean
,
dateCols
){
dataClean
$
waitTime
<-
as.integer
(
dataClean
[[
dateCols
[
2
]]]
-
dataClean
[[
dateCols
[
1
]]])
print
(
"The wait time column has been added to the dataframe dataClean"
)
return
(
dataClean
)
}
dataClean
<-
calc_wait
(
dataClean
,
c
(
3
,
4
))
#Inputs: dataframe, columns to calculate wait times
#[Q]
#Generate wait time descriptives and histogram - Aggregate
#[12]
top_level_des
<-
function
(
dataClean
,
colNum
){
waitDes
<-
describe
(
dataClean
[
colNum
])
write.csv
(
waitDes
,
"top_level_descriptives.csv"
)
jpeg
(
"wait_time_hist.jpeg"
)
waitHist
<-
hist
(
dataClean
[[
colNum
]],
main
=
"Frequency of wait times for all patients"
,
xlab
=
"Wait time"
)
dev.off
()
}
top_level_des
(
dataClean
,
6
)
#Inputs: dataframe, column to describe and plot
#[A]
#Subset wait time data by month
#(patients treated and still awaiting treatment during a given month)
#[17]
data_monthly
<-
function
(
dataClean
,
refDate
,
treatDate
){
startDate
<-
min
(
dataClean
[,
refDate
])
endDate
<-
max
(
dataClean
[,
treatDate
],
na.rm
=
TRUE
)
months
<-
seq
(
from
=
startDate
,
to
=
endDate
,
by
=
'month'
)
numMonths
<-
length
(
months
)
waitList
<-
list
()
errorCount
<-
0
for
(
i
in
1
:
(
numMonths
-1
)){
a
<-
dataClean
[
which
(
dataClean
[[
treatDate
]]
>
months
[
i
]
&
dataClean
[[
refDate
]]
<
months
[
i
+1
]),]
actWait
<-
rep
(
0
,
length
(
a
[[
1
]]))
for
(
j
in
1
:
length
(
a
[[
1
]])){
if
(
a
[
j
,
treatDate
]
<
months
[
i
+1
]){
actWait
[
j
]
<-
a
[
j
,
treatDate
]
-
a
[
j
,
refDate
]
}
else
{
actWait
[
j
]
<-
months
[
i
+1
]
-
a
[
j
,
refDate
]
}
if
(
actWait
[
j
]
<
0
){
errorCount
<-
errorCount
+1
print
(
"Negative value in month"
,
i
,
"row"
,
j
)
}
}
a
$
activeWaitTime
<-
actWait
waitList
[[
i
]]
<-
data.frame
(
a
$
activeWaitTime
,
a
$
Service_Name
)
}
if
(
errorCount
>
0
){
print
(
paste
(
"Warning:"
,
errorCount
,
"negative values detected check the output"
))
}
else
{
print
(
"Calculations completed. No negative values detected"
)
}
return
(
waitList
)
}
waitList
<-
data_monthly
(
dataClean
,
3
,
4
)
#Inputs: dataframe, referral date column,
#treatment date column
#[D]
#Convert wait list into single multilevel dataframe
#[5]
convert_list
<-
function
(
waitList
){
dfWait
<-
melt
(
waitList
)
dfWait
<-
droplevels
(
dfWait
)
print
(
"The column names for the analysis are..."
)
print
(
colnames
(
dfWait
))
return
(
dfWait
)
}
dfWait
<-
convert_list
(
waitList
)
#Inputs: dataframe
#[P]
#Patient numbers barchart and descriptives
#[6]
patient_nums
<-
function
(
dfWait
,
addDate
){
waitListTab
<-
table
(
dfWait
$
L1
)
waitListDf
<-
as.data.frame
(
waitListTab
)
waitListDes
<-
describe
(
waitListDf
$
Freq
)
if
(
addDate
==
1
){
write.csv
(
waitListDes
,
paste
(
Sys.Date
(),
"wait_list_numbers_monthly_des.csv"
,
sep
=
"_"
))
jpeg
(
paste
(
Sys.Date
(),
"wait_list_numbers_monthly.csv"
,
sep
=
""
))
}
else
{
write.csv
(
waitListDes
,
"wait_list_numbers_monthly_des.csv"
)
jpeg
(
"wait_list_numbers_monthly.jpeg"
)
}
barplot
(
waitListTab
,
xlab
=
"Month"
,
ylab
=
"Frequency"
,
main
=
"Number of patients on the waiting list"
,
cex.names
=
0.8
)
dev.off
()
}
patient_nums
(
dfWait
,
1
)
#Inputs: dataframe, use 1 to add todays date to filenames
#[R]
#Patient numbers by team barchart and descriptives
#[16]
team_patient_nums
<-
function
(
dfWait
){
teamWaitListTab
<-
table
(
dfWait
$
a.Service_Name
,
dfWait
$
L1
)
teamWaitListDf
<-
as.data.frame
(
teamWaitListTab
)
teamWaitListDes
<-
describeBy
(
teamWaitListDf
$
Freq
,
teamWaitListDf
$
Var1
)
teamWaitListDes
<-
do.call
(
rbind.data.frame
,
teamWaitListDes
)
jpeg
(
"team_wait_list_numbers_monthly.jpeg"
)
barplot
(
teamWaitListTab
,
beside
=
TRUE
,
xlab
=
"Month"
,
ylab
=
"Frequency"
,
main
=
"Number of patients on the waiting list by team"
,
cex.names
=
0.8
,
legend
=
TRUE
,
args.legend
=
list
(
x
=
"topright"
,
legend
=
c
(
"Team 1"
,
"Team 2"
)))
abline
(
h
=
mean
(
teamWaitListTab
[
1
,]))
abline
(
h
=
mean
(
teamWaitListTab
[
2
,]),
lty
=
2
)
dev.off
()
write.csv
(
teamWaitListDes
,
"team_wait_list_numbers_monthly_des.csv"
)
}
team_patient_nums
(
dfWait
)
#Inputs: dataframe
#[J]
#Patient waiting times boxplot and descriptives by month
#[8]
time_patient_wait_time
<-
function
(
dfWait
){
jpeg
(
"wait_times_monthly.jpeg"
)
timeWaitTimePlot
<-
qplot
(
factor
(
L1
),
value
,
data
=
dfWait
,
geom
=
'boxplot'
)
timeWaitTimePlot
+
xlab
(
"Month"
)
+
ylab
(
"Waiting time (days)"
)
+
ggtitle
(
"Patient waiting times for service X over time"
)
dev.off
()
waitTimeDes
<-
describeBy
(
dfWait
$
value
,
group
=
dfWait
$
L1
)
waitTimeDes
<-
do.call
(
rbind.data.frame
,
waitTimeDes
)
write.csv
(
waitTimeDes
,
"wait_times_monthly_des.csv"
)
}
time_patient_wait_time
(
dfWait
)
#Inputs: dataframe
#[N]
#Patient waiting times boxplot and descriptives by team
#[10]
team_patient_wait_time
<-
function
(
dfWait
){
jpeg
(
"wait_times_team.jpeg"
)
teamWaitTimePlot
<-
qplot
(
a.Service_Name
,
value
,
data
=
dfWait
,
geom
=
'boxplot'
)
teamWaitTimePlot
+
xlab
(
"Month"
)
+
ylab
(
"Waiting time (days)"
)
+
ggtitle
(
"Patient waiting times for service by team"
)
dev.off
()
teamWaitTimeDes
<-
describeBy
(
dfWait
$
value
,
group
=
dfWait
$
a.Service_Name
)
teamWaitTimeDes
<-
do.call
(
rbind.data.frame
,
teamWaitTimeDes
)
write.csv
(
teamWaitTimeDes
,
"wait_times_team_des.csv"
)
}
team_patient_wait_time
(
dfWait
)
#Inputs: dataframe
#[O]
#Patient waiting times boxplot and descriptives by month and team
#[4]
team_time_patient_wait_time
<-
function
(
dfWait
){
dfWait
$
ServTime
<-
interaction
(
dfWait
$
a.Service_Name
,
dfWait
$
L1
)
breaks
<-
dfWait
$
ServTime
[
seq
(
1
,
length
(
levels
(
dfWait
$
ServTime
)),
2
)]
lab
<-
as.character
(
seq
(
1
,
length
(
breaks
)))
jpeg
(
"wait_times_monthly_team.jpeg"
)
teamTimeWaitTimePlot
<-
qplot
(
factor
(
ServTime
),
value
,
data
=
dfWait
,
fill
=
a.Service_Name
,
geom
=
'boxplot'
)
teamTimeWaitTimePlot
+
scale_x_discrete
(
name
=
"Month"
,
breaks
=
breaks
,
labels
=
lab
)
+
ylab
(
"Waiting Time"
)
dev.off
()
teamTimeWaitTimeDes
<-
describeBy
(
dfWait
$
value
,
group
=
list
(
dfWait
$
a.Service_Name
,
dfWait
$
L1
))
teamTimeWaitTimeDes
<-
do.call
(
rbind.data.frame
,
teamTimeWaitTimeDes
)
write.csv
(
teamTimeWaitTimeDes
,
"wait_times_monthly_team.csv"
)
}
team_time_patient_wait_time
(
dfWait
)
#Inputs: dataframe
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment