tg2.c 73.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/*
 * tg.c generate WWV or IRIG signals for test
 */
/*
 * This program can generate audio signals that simulate the WWV/H
 * broadcast timecode. Alternatively, it can generate the IRIG-B
 * timecode commonly used to synchronize laboratory equipment. It is
 * intended to test the WWV/H driver (refclock_wwv.c) and the IRIG
 * driver (refclock_irig.c) in the NTP driver collection.
 *
 * Besides testing the drivers themselves, this program can be used to
 * synchronize remote machines over audio transmission lines or program
 * feeds. The program reads the time on the local machine and sets the
 * initial epoch of the signal generator within one millisecond.
 * Alernatively, the initial epoch can be set to an arbitrary time. This
 * is useful when searching for bugs and testing for correct response to
 * a leap second in UTC. Note however, the ultimate accuracy is limited
 * by the intrinsic frequency error of the codec sample clock, which can
 # reach well over 100 PPM.
 *
 * The default is to route generated signals to the line output
 * jack; the s option on the command line routes these signals to the
 * internal speaker as well. The v option controls the speaker volume
 * over the range 0-255. The signal generator by default uses WWV
 * format; the h option switches to WWVH format and the i option
 * switches to IRIG-B format.
 *
 * Once started the program runs continuously. The default initial epoch
 * for the signal generator is read from the computer system clock when
 * the program starts. The y option specifies an alternate epoch using a
 * string yydddhhmmss, where yy is the year of century, ddd the day of
 * year, hh the hour of day and mm the minute of hour. For instance,
 * 1946Z on 1 January 2006 is 060011946. The l option lights the leap
 * warning bit in the WWV/H timecode, so is handy to check for correct
 * behavior at the next leap second epoch. The remaining options are
 * specified below under the Parse Options heading. Most of these are
 * for testing.
 *
 * During operation the program displays the WWV/H timecode (9 digits)
 * or IRIG timecode (20 digits) as each new string is constructed. The
 * display is followed by the BCD binary bits as transmitted. Note that
 * the transmissionorder is low-order first as the frame is processed
 * left to right. For WWV/H The leap warning L preceeds the first bit.
 * For IRIG the on-time marker M preceeds the first (units) bit, so its
 * code is delayed one bit and the next digit (tens) needs only three
 * bits.
 *
 * The program has been tested with the Sun Blade 1500 running Solaris
 * 10, but not yet with other machines. It uses no special features and
 * should be readily portable to other hardware and operating systems.
 *
52 53 54 55 56
 * Assumes the Sun Audio Driver API (SADA) interface used by SunOS, Solaris,
 * and OpenSolaris, supported in the Linux OSS sound layer, 
 * and still used by the *BSD operating systems. In particular it should work
 * for FreeBSD from version 4.1 on with compatible sound card.
 *
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
 * Revision 1.28  2007/02/12 23:57:45  dmw
 * v0.23 2007-02-12 dmw:
 * - Changed statistics to include calculated error
 *   of frequency, based on number of added or removed
 *   cycles over time.
 *
 * Revision 1.27  2007/02/09 02:28:59  dmw
 * v0.22 2007-02-08 dmw:
 * - Changed default for rate correction to "enabled", "-j" switch now disables.
 * - Adjusted help message accordingly.
 * - Added "2007" to modifications note at end of help message.
 *
 * Revision 1.26  2007/02/08 03:36:17  dmw
 * v0.21 2007-02-07 dmw:
 * - adjusted strings for shorten and lengthen to make
 *   fit on smaller screen.
 *
 * Revision 1.25  2007/02/01 06:08:09  dmw
 * v0.20 2007-02-01 dmw:
 * - Added periodic display of running time along with legend on IRIG-B, allows tracking how
 *   close IRIG output is to actual clock time.
 *
 * Revision 1.24  2007/01/31 19:24:11  dmw
 * v0.19 2007-01-31 dmw:
 * - Added tracking of how many seconds have been adjusted,
 *   how many cycles added (actually in milliseconds), how
 *   many cycles removed, print periodically if verbose is
 *   active.
 * - Corrected lack of lengthen or shorten of minute & hour
 *   pulses for WWV format.
 *
 * Revision 1.23  2007/01/13 07:09:12  dmw
 * v0.18 2007-01-13 dmw:
 * - added -k option, which allows force of long or short
 *   cycles, to test against IRIG-B decoder.
 *
 * Revision 1.22  2007/01/08 16:27:23  dmw
 * v0.17 2007-01-08 dmw:
 * - Changed -j option to **enable** rate correction, not disable.
 *
 * Revision 1.21  2007/01/08 06:22:36  dmw
 * v0.17 2007-01-08 dmw:
 * - Run stability check versus ongoing system clock (assume NTP correction)
 *   and adjust time code rate to try to correct, if gets too far out of sync.
 *   Disable this algorithm with -j option.
 *
 * Revision 1.20  2006/12/19 04:59:04  dmw
 * v0.16 2006-12-18 dmw
 * - Corrected print of setting of output frequency, always
 *   showed 8000 samples/sec, now as specified on command line.
 * - Modified to reflect new employer Norscan.
 *
 * Revision 1.19  2006/12/19 03:45:38  dmw
 * v0.15 2006-12-18 dmw:
 * - Added count of number of seconds to output then exit,
 *   default zero for forever.
 *
 * Revision 1.18  2006/12/18 05:43:36  dmw
 * v0.14 2006-12-17 dmw:
 * - Corrected WWV(H) signal to leave "tick" sound off of 29th and 59th second of minute.
 * - Adjusted verbose output format for WWV(H).
 *
 * Revision 1.17  2006/12/18 02:31:33  dmw
 * v0.13 2006-12-17 dmw:
 * - Put SPARC code back in, hopefully will work, but I don't have
 *   a SPARC to try it on...
 * - Reworked Verbose mode, different flag to initiate (x not v)
 *   and actually implement turn off of verbosity when this flag used.
 * - Re-claimed v flag for output level.
 * - Note that you must define OSS_MODS to get OSS to compile,
 *   otherwise will expect to compile using old SPARC options, as
 *   it used to be.
 *
 * Revision 1.16  2006/10/26 19:08:43  dmw
 * v0.12 2006-10-26 dmw:
 * - Reversed output binary dump for IRIG, makes it easier to read the numbers.
 *
 * Revision 1.15  2006/10/24 15:57:09  dmw
 * v0.11 2006-10-24 dmw:
 * - another tweak.
 *
 * Revision 1.14  2006/10/24 15:55:53  dmw
 * v0.11 2006-10-24 dmw:
 * - Curses a fix to the fix to the fix of the usaeg.
 *
 * Revision 1.13  2006/10/24 15:53:25  dmw
 * v0.11 (still) 2006-10-24 dmw:
 * - Messed with usage message that's all.
 *
 * Revision 1.12  2006/10/24 15:50:05  dmw
 * v0.11 2006-10-24 dmw:
 * - oops, needed to note "hours" in usage of that offset.
 *
 * Revision 1.11  2006/10/24 15:49:09  dmw
 * v0.11 2006-10-24 dmw:
 * - Added ability to offset actual time sent, from the UTC time
 *   as per the computer.
 *
 * Revision 1.10  2006/10/24 03:25:55  dmw
 * v0.10 2006-10-23 dmw:
 * - Corrected polarity of correction of offset when going into or out of DST.
 * - Ensure that zero offset is always positive (pet peeve).
 *
 * Revision 1.9  2006/10/24 00:00:35  dmw
 * v0.9 2006-10-23 dmw:
 * - Shift time offset when DST in or out.
 *
 * Revision 1.8  2006/10/23 23:49:28  dmw
 * v0.8 2006-10-23 dmw:
 * - made offset of zero default positive.
 *
 * Revision 1.7  2006/10/23 23:44:13  dmw
 * v0.7 2006-10-23 dmw:
 * - Added unmodulated and inverted unmodulated output.
 *
 * Revision 1.6  2006/10/23 18:10:37  dmw
 * v0.6 2006-10-23 dmw:
 * - Cleaned up usage message.
 * - Require at least one option, or prints usage message and exits.
 *
 * Revision 1.5  2006/10/23 16:58:10  dmw
 * v0.5 2006-10-23 dmw:
 * - Finally added a usage message.
 * - Added leap second pending and DST change pending into IEEE 1344.
 * - Default code type is now IRIG-B with IEEE 1344.
 *
 * Revision 1.4  2006/10/23 03:27:25  dmw
 * v0.4 2006-10-22 dmw:
 * - Added leap second addition and deletion.
 * - Added DST changing forward and backward.
 * - Changed date specification to more conventional year, month, and day of month
 *   (rather than day of year).
 *
 * Revision 1.3  2006/10/22 21:04:12  dmw
 * v0.2 2006-10-22 dmw:
 * - Corrected format of legend line.
 *
 * Revision 1.2  2006/10/22 21:01:07  dmw
 * v0.1 2006-10-22 dmw:
 * - Added some more verbose output (as is my style)
 * - Corrected frame format - there were markers in the
 *   middle of frames, now correctly as "zero" bits.
 * - Added header line to show fields of output.
 * - Added straight binary seconds, were not implemented
 *   before.
 * - Added IEEE 1344 with parity.
 *
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "config.h"
#undef VERSION		/* avoid conflict below */

#ifdef  HAVE_SYS_SOUNDCARD_H
#include <sys/soundcard.h>
#else
# ifdef HAVE_SYS_AUDIOIO_H
# include <sys/audioio.h>
# else
# include <sys/audio.h>
# endif
#endif

223 224
#include "ntp_stdlib.h"	/* for strlcat(), strlcpy() */

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
#include <math.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <ctype.h>
#include <sys/ioctl.h>
#include <sys/time.h>

#define VERSION		(0)
#define	ISSUE		(23)
#define	ISSUE_DATE	"2007-02-12"

#define	SECOND	(8000)			/* one second of 125-us samples */
#define BUFLNG	(400)			/* buffer size */
#define	DEVICE	"/dev/audio"	/* default audio device */
#define	WWV		(0)				/* WWV encoder */
#define	IRIG	(1)				/* IRIG-B encoder */
#define	OFF		(0)				/* zero amplitude */
#define	LOW		(1)				/* low amplitude */
#define	HIGH	(2)				/* high amplitude */
#define	DATA0	(200)			/* WWV/H 0 pulse */
#define	DATA1	(500)			/* WWV/H 1 pulse */
#define PI		(800)			/* WWV/H PI pulse */
#define	M2		(2)				/* IRIG 0 pulse */
#define	M5		(5)				/* IRIG 1 pulse */
#define	M8		(8)				/* IRIG PI pulse */

#define	NUL		(0)

#define	SECONDS_PER_MINUTE	(60)
#define SECONDS_PER_HOUR	(3600)

#define	OUTPUT_DATA_STRING_LENGTH	(200)

/* Attempt at unmodulated - "high" */
int u6000[] = {
	247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/*  0- 9 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 10-19 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 20-29 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 30-39 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 40-49 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 	/* 50-59 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 60-69 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247}; 	/* 70-79 */

/* Attempt at unmodulated - "low" */
int u3000[] = {
	119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/*  0- 9 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 10-19 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 20-29 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 30-39 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 40-49 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 	/* 50-59 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 60-69 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119}; 	/* 70-79 */

/*
 * Companded sine table amplitude 3000 units
 */
int c3000[] = {1, 48, 63, 70, 78, 82, 85, 89, 92, 94,	/* 0-9 */
     96,  98,  99, 100, 101, 101, 102, 103, 103, 103,	/* 10-19 */
    103, 103, 103, 103, 102, 101, 101, 100,  99,  98,	/* 20-29 */
     96,  94,  92,  89,  85,  82,  78,  70,  63,  48,	/* 30-39 */
    129, 176, 191, 198, 206, 210, 213, 217, 220, 222,	/* 40-49 */
    224, 226, 227, 228, 229, 229, 230, 231, 231, 231, 	/* 50-59 */
    231, 231, 231, 231, 230, 229, 229, 228, 227, 226,	/* 60-69 */
    224, 222, 220, 217, 213, 210, 206, 198, 191, 176}; 	/* 70-79 */
/*
 * Companded sine table amplitude 6000 units
 */
int c6000[] = {1, 63, 78, 86, 93, 98, 101, 104, 107, 110, /* 0-9 */
    112, 113, 115, 116, 117, 117, 118, 118, 119, 119,	/* 10-19 */
    119, 119, 119, 118, 118, 117, 117, 116, 115, 113,	/* 20-29 */
    112, 110, 107, 104, 101,  98,  93,  86,  78,  63,	/* 30-39 */
    129, 191, 206, 214, 221, 226, 229, 232, 235, 238,	/* 40-49 */
    240, 241, 243, 244, 245, 245, 246, 246, 247, 247, 	/* 50-59 */
    247, 247, 247, 246, 246, 245, 245, 244, 243, 241,	/* 60-69 */
    240, 238, 235, 232, 229, 226, 221, 214, 206, 191}; 	/* 70-79 */

/*
 * Decoder operations at the end of each second are driven by a state
 * machine. The transition matrix consists of a dispatch table indexed
 * by second number. Each entry in the table contains a case switch
 * number and argument.
 */
struct progx {
	int sw;			/* case switch number */
	int arg;		/* argument */
};

/*
 * Case switch numbers
 */
#define DATA	(0)		/* send data (0, 1, PI) */
#define COEF	(1)		/* send BCD bit */
#define	DEC		(2)		/* decrement to next digit and send PI */
#define	MIN		(3)		/* minute pulse */
#define	LEAP	(4)		/* leap warning */
#define	DUT1	(5)		/* DUT1 bits */
#define	DST1	(6)		/* DST1 bit */
#define	DST2	(7)		/* DST2 bit */
#define DECZ	(8)		/* decrement to next digit and send zero */
#define DECC	(9)		/* decrement to next digit and send bit */
#define NODEC	(10)	/* no decerement to next digit, send PI */
#define DECX	(11)	/* decrement to next digit, send PI, but no tick */
#define DATAX	(12)	/* send data (0, 1, PI), but no tick */

/*
 * WWV/H format (100-Hz, 9 digits, 1 m frame)
 */
struct progx progx[] = {
	{MIN,	800},		/* 0 minute sync pulse */
	{DATA,	DATA0},		/* 1 */
	{DST2,	0},		/* 2 DST2 */
	{LEAP,	0},		/* 3 leap warning */
	{COEF,	1},		/* 4 1 year units */
	{COEF,	2},		/* 5 2 */
	{COEF,	4},		/* 6 4 */
	{COEF,	8},		/* 7 8 */
	{DEC,	DATA0},		/* 8 */
	{DATA,	PI},		/* 9 p1 */
	{COEF,	1},		/* 10 1 minute units */
	{COEF,	2},		/* 11 2 */
	{COEF,	4},		/* 12 4 */
	{COEF,	8},		/* 13 8 */
	{DEC,	DATA0},		/* 14 */
	{COEF,	1},		/* 15 10 minute tens */
	{COEF,	2},		/* 16 20 */
	{COEF,	4},		/* 17 40 */
	{COEF,	8},		/* 18 80 (not used) */
	{DEC,	PI},		/* 19 p2 */
	{COEF,	1},		/* 20 1 hour units */
	{COEF,	2},		/* 21 2 */
	{COEF,	4},		/* 22 4 */
	{COEF,	8},		/* 23 8 */
	{DEC,	DATA0},		/* 24 */
	{COEF,	1},		/* 25 10 hour tens */
	{COEF,	2},		/* 26 20 */
	{COEF,	4},		/* 27 40 (not used) */
	{COEF,	8},		/* 28 80 (not used) */
	{DECX,	PI},		/* 29 p3 */
	{COEF,	1},		/* 30 1 day units */
	{COEF,	2},		/* 31 2 */
	{COEF,	4},		/* 32 4 */
	{COEF,	8},		/* 33 8 */
	{DEC,	DATA0},		/* 34 not used */
	{COEF,	1},		/* 35 10 day tens */
	{COEF,	2},		/* 36 20 */
	{COEF,	4},		/* 37 40 */
	{COEF,	8},		/* 38 80 */
	{DEC,	PI},		/* 39 p4 */
	{COEF,	1},		/* 40 100 day hundreds */
	{COEF,	2},		/* 41 200 */
	{COEF,	4},		/* 42 400 (not used) */
	{COEF,	8},		/* 43 800 (not used) */
	{DEC,	DATA0},		/* 44 */
	{DATA,	DATA0},		/* 45 */
	{DATA,	DATA0},		/* 46 */
	{DATA,	DATA0},		/* 47 */
	{DATA,	DATA0},		/* 48 */
	{DATA,	PI},		/* 49 p5 */
	{DUT1,	8},		/* 50 DUT1 sign */
	{COEF,	1},		/* 51 10 year tens */
	{COEF,	2},		/* 52 20 */
	{COEF,	4},		/* 53 40 */
	{COEF,	8},		/* 54 80 */
	{DST1,	0},		/* 55 DST1 */
	{DUT1,	1},		/* 56 0.1 DUT1 fraction */
	{DUT1,	2},		/* 57 0.2 */
	{DUT1,	4},		/* 58 0.4 */
	{DATAX,	PI},		/* 59 p6 */
	{DATA,	DATA0},		/* 60 leap */
};

/*
 * IRIG format frames (1000 Hz, 1 second for 10 frames of data)
 */

/*
 * IRIG format frame 10 - MS straight binary seconds
 */
struct progx progu[] = {
	{COEF,	2},		/* 0 0x0 0200 seconds */
	{COEF,	4},		/* 1 0x0 0400 */
	{COEF,	8},		/* 2 0x0 0800 */
	{DECC,	1},		/* 3 0x0 1000 */
	{COEF,	2},		/* 4 0x0 2000 */
	{COEF,	4},		/* 6 0x0 4000 */
	{COEF,	8},		/* 7 0x0 8000 */
	{DECC,	1},		/* 8 0x1 0000 */
	{COEF,  2},     /* 9 0x2 0000 - but only 86,401 / 0x1 5181 seconds in a day, so always zero */
	{NODEC,	M8},	/* 9 PI */
};

/*
 * IRIG format frame 8 - MS control functions
 */
struct progx progv[] = {
	{COEF,	2},		/*  0 CF # 19 */
	{COEF,	4},		/*  1 CF # 20 */
	{COEF,	8},		/*  2 CF # 21 */
	{DECC,	1},		/*  3 CF # 22 */
	{COEF,	2},		/*  4 CF # 23 */
	{COEF,	4},		/*  6 CF # 24 */
	{COEF,	8},		/*  7 CF # 25 */
	{DECC,	1},		/*  8 CF # 26 */
	{COEF,  2},		/*  9 CF # 27 */
	{DEC,	M8},	/* 10 PI */
};

/*
 * IRIG format frames 7 & 9 - LS control functions & LS straight binary seconds
 */
struct progx progw[] = {
	{COEF,	1},		/*  0  CF # 10, 0x0 0001 seconds */
	{COEF,	2},		/*  1  CF # 11, 0x0 0002 */
	{COEF,	4},		/*  2  CF # 12, 0x0 0004 */
	{COEF,	8},		/*  3  CF # 13, 0x0 0008 */
	{DECC,	1},		/*  4  CF # 14, 0x0 0010 */
	{COEF,	2},		/*  6  CF # 15, 0x0 0020 */
	{COEF,	4},		/*  7  CF # 16, 0x0 0040 */
	{COEF,	8},		/*  8  CF # 17, 0x0 0080 */
	{DECC,  1},		/*  9  CF # 18, 0x0 0100 */
	{NODEC,	M8},	/* 10  PI */
};

/*
 * IRIG format frames 2 to 6 - minutes, hours, days, hundreds days, 2 digit years (also called control functions bits 1-9)
 */
struct progx progy[] = {
	{COEF,	1},		/* 0 1 units, CF # 1 */
	{COEF,	2},		/* 1 2 units, CF # 2 */
	{COEF,	4},		/* 2 4 units, CF # 3 */
	{COEF,	8},		/* 3 8 units, CF # 4 */
	{DECZ,	M2},	/* 4 zero bit, CF # 5 / unused, default zero in years */
	{COEF,	1},		/* 5 10 tens, CF # 6 */
	{COEF,	2},		/* 6 20 tens, CF # 7*/
	{COEF,	4},		/* 7 40 tens, CF # 8*/
	{COEF,	8},		/* 8 80 tens, CF # 9*/
	{DEC,	M8},	/* 9 PI */
};

/*
 * IRIG format first frame, frame 1 - seconds
 */
struct progx progz[] = {
	{MIN,	M8},	/* 0 PI (on-time marker for the second at zero cross of 1st cycle) */
	{COEF,	1},		/* 1 1 units */
	{COEF,	2},		/* 2 2 */
	{COEF,	4},		/* 3 4 */
	{COEF,	8},		/* 4 8 */
	{DECZ,	M2},	/* 5 zero bit */
	{COEF,	1},		/* 6 10 tens */
	{COEF,	2},		/* 7 20 */
	{COEF,	4},		/* 8 40 */
	{DEC,	M8},	/* 9 PI */
};

/* LeapState values. */
#define	LEAPSTATE_NORMAL			(0)
#define	LEAPSTATE_DELETING			(1)
#define	LEAPSTATE_INSERTING			(2)
#define	LEAPSTATE_ZERO_AFTER_INSERT	(3)


/*
 * Forward declarations
 */
void	WWV_Second(int, int);		/* send second */
void	WWV_SecondNoTick(int, int);	/* send second with no tick */
void	digit(int);		/* encode digit */
void	peep(int, int, int);	/* send cycles */
void	poop(int, int, int, int); /* Generate unmodulated from similar tables */
void	delay(int);		/* delay samples */
int		ConvertMonthDayToDayOfYear (int, int, int);	/* Calc day of year from year month & day */
void	Help (void);	/* Usage message */
void	ReverseString(char *);

/*
 * Extern declarations, don't know why not in headers
 */
//float	round ( float );

/*
 * Global variables
 */
char	buffer[BUFLNG];		/* output buffer */
int	bufcnt = 0;		/* buffer counter */
int	fd;			/* audio codec file descriptor */
int	tone = 1000;		/* WWV sync frequency */
int HourTone = 1500;	/* WWV hour on-time frequency */
int	encode = IRIG;		/* encoder select */
int	leap = 0;		/* leap indicator */
int	DstFlag = 0;		/* winter/summer time */
int	dut1 = 0;		/* DUT1 correction (sign, magnitude) */
int	utc = 0;		/* option epoch */
524 525
bool IrigIncludeYear = false;	/* Whether to send year in first control functions area, between P5 and P6. */
bool IrigIncludeIeee = false;	/* Whether to send IEEE 1344 control functions extensions between P6 and P8. */
526 527
int	StraightBinarySeconds = 0;
int	ControlFunctions = 0;
528 529
bool	Debug = false;
bool	Verbose = true;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
char	*CommandName;

#ifndef  HAVE_SYS_SOUNDCARD_H
int	level = AUDIO_MAX_GAIN / 8; /* output level */
int	port = AUDIO_LINE_OUT;	/* output port */
#endif

int		TotalSecondsCorrected = 0;
int		TotalCyclesAdded = 0;
int		TotalCyclesRemoved = 0;


/*
 * Main program
 */
int
main(
	int		argc,		/* command line options */
	char	**argv		/* poiniter to list of tokens */
	)
{
#ifndef  HAVE_SYS_SOUNDCARD_H
	audio_info_t info;	/* Sun audio structure */
	int	rval;           /* For IOCTL calls */
#endif

556
	struct	timespec	 TimeValue;				/* System clock at startup */
557
	time_t			 SecondsPartOfTime;		/* Sent to gmtime_r() for calculation of TimeStructure (can apply offset). */
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	time_t			 BaseRealTime;			/* Base realtime so can determine seconds since starting. */
	time_t			 NowRealTime;			/* New realtime to can determine seconds as of now. */
	unsigned		 SecondsRunningRealTime;	/* Difference between NowRealTime and BaseRealTime. */
	unsigned		 SecondsRunningSimulationTime;	/* Time that the simulator has been running. */
	int				 SecondsRunningDifference;	/* Difference between what real time says we have been running */
												/* and what simulator says we have been running - will slowly  */
												/* change because of clock drift. */
	int				 ExpectedRunningDifference = 0;	/* Stable value that we've obtained from check at initial start-up.	*/
	unsigned		 StabilityCount;		/* Used to check stability of difference while starting */
#define	RUN_BEFORE_STABILITY_CHECK	(30)	// Must run this many seconds before even checking stability.
#define	MINIMUM_STABILITY_COUNT		(10)	// Number of consecutive differences that need to be within initial stability band to say we are stable.
#define	INITIAL_STABILITY_BAND		( 2)	// Determining initial stability for consecutive differences within +/- this value.
#define	RUNNING_STABILITY_BAND		( 5)	// When running, stability is defined as difference within +/- this value.

	struct	tm		*TimeStructure = NULL;	/* Structure returned by gmtime */
	char	device[200];	/* audio device */
	char	code[200];	/* timecode */
	int	temp;
	int	arg = 0;
	int	sw = 0;
	int	ptr = 0;

	int	Year;
	int	Month;
	int	DayOfMonth;
	int	Hour;
	int	Minute;
	int	Second = 0;
	int	DayOfYear;

	int	BitNumber;
589
#ifdef HAVE_SYS_SOUNDCARD_H
590
	int	AudioFormat;
591
	int	MonoStereo;     /* 0=mono, 1=stereo */
592 593 594 595
#define	MONO	(0)
#define	STEREO	(1)
	int	SampleRate;
	int	SampleRateDifference;
596 597
#endif
	int	SetSampleRate;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	char FormatCharacter = '3';		/* Default is IRIG-B with IEEE 1344 extensions */
	char AsciiValue;
	int	HexValue;
	int FrameNumber = 0;

	/* Time offset for IEEE 1344 indication. */
	float TimeOffset = 0.0;
	int	OffsetSignBit = 0;
	int OffsetOnes = 0;
	int OffsetHalf = 0;

	int	TimeQuality = 0;	/* Time quality for IEEE 1344 indication. */
	char ParityString[200];	/* Partial output string, to calculate parity on. */
	int	ParitySum = 0;
	int	ParityValue;
	char *StringPointer;

	/* Flags to indicate requested leap second addition or deletion by command line option. */
	/* Should be mutually exclusive - generally ensured by code which interprets command line option. */
617 618
	bool	InsertLeapSecond = false;
	bool	DeleteLeapSecond = false;
619 620 621 622 623 624 625 626 627 628 629 630 631 632

	/* Date and time of requested leap second addition or deletion. */
	int	LeapYear					= 0;
	int LeapMonth					= 0;
	int	LeapDayOfMonth				= 0;
	int LeapHour					= 0;
	int	LeapMinute					= 0;
	int	LeapDayOfYear				= 0;

	/* State flag for the insertion and deletion of leap seconds, esp. deletion, */
	/* where the logic gets a bit tricky. */
	int	LeapState = LEAPSTATE_NORMAL;

	/* Flags for indication of leap second pending and leap secod polarity in IEEE 1344 */
633 634
	bool	LeapSecondPending = false;
	bool	LeapSecondPolarity = false;
635 636 637 638 639 640 641 642 643 644

	/* Date and time of requested switch into or out of DST by command line option. */
	int	DstSwitchYear				= 0;
	int DstSwitchMonth				= 0;
	int	DstSwitchDayOfMonth			= 0;
	int DstSwitchHour				= 0;
	int	DstSwitchMinute				= 0;
	int	DstSwitchDayOfYear			= 0;

	/* Indicate when we have been asked to switch into or out of DST by command line option. */
645
	bool	DstSwitchFlag = false;
646 647 648 649 650 651 652 653

	/* To allow predict for DstPendingFlag in IEEE 1344 */
	int	DstSwitchPendingYear		= 0;	/* Default value isn't valid, but I don't care. */
	int	DstSwitchPendingDayOfYear	= 0;
	int	DstSwitchPendingHour		= 0;
	int	DstSwitchPendingMinute		= 0;

	/* /Flag for indication of a DST switch pending in IEEE 1344 */
654
	bool	DstPendingFlag = false;
655 656

	/* Attempt at unmodulated */
657 658
	bool	Unmodulated = false;
	bool	UnmodulatedInverted = false;
659 660 661 662 663 664 665 666 667 668 669 670 671 672

	/* Offset to actual time value sent. */
	float	UseOffsetHoursFloat;
	int		UseOffsetSecondsInt = 0;
	float	UseOffsetSecondsFloat;

	/* String to allow us to put out reversed data - so can read the binary numbers. */
	char	OutputDataString[OUTPUT_DATA_STRING_LENGTH];
	
	/* Number of seconds to send before exiting.  Default = 0 = forever. */
	int		SecondsToSend = 0;
	int		CountOfSecondsSent = 0;	/* Counter of seconds */
	
	/* Flags to indicate whether to add or remove a cycle for time adjustment. */
673 674
	bool		AddCycle = false;	 	// We are ahead, add cycle to slow down and get back in sync.
	bool		RemoveCycle = false;	// We are behind, remove cycle to slow down and get back in sync.
675
	int		RateCorrection;			// Aggregate flag for passing to subroutines.
676
	bool		EnableRateCorrection = true;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	
	float	RatioError;


	CommandName = argv[0];

	if	(argc < 1)
		{
		Help ();
		exit (-1);
		}

	/*
	 * Parse options
	 */
692
	strlcpy(device, DEVICE, sizeof(device));
693 694 695 696 697 698 699 700 701 702 703
	Year = 0;
	SetSampleRate = SECOND;
	
#if	HAVE_SYS_SOUNDCARD_H
	while ((temp = getopt(argc, argv, "a:b:c:df:g:hHi:jk:l:o:q:r:stu:xy:z?")) != -1) {
#else
	while ((temp = getopt(argc, argv, "a:b:c:df:g:hHi:jk:l:o:q:r:stu:v:xy:z?")) != -1) {
#endif
		switch (temp) {

		case 'a':	/* specify audio device (/dev/audio) */
704
			strlcpy(device, optarg, sizeof(device));
705 706 707 708 709
			break;

		case 'b':	/* Remove (delete) a leap second at the end of the specified minute. */
			sscanf(optarg, "%2d%2d%2d%2d%2d", &LeapYear, &LeapMonth, &LeapDayOfMonth,
			    &LeapHour, &LeapMinute);
710 711
			InsertLeapSecond = false;
			DeleteLeapSecond = true;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
			break;
			
		case 'c':	/* specify number of seconds to send output for before exiting, 0 = forever */
			sscanf(optarg, "%d", &SecondsToSend);
			break;

		case 'd':	/* set DST for summer (WWV/H only) / start with DST active (IRIG) */
			DstFlag++;
			break;

		case 'f':	/* select format: i=IRIG-98 (default) 2=IRIG-2004 3-IRIG+IEEE-1344 w=WWV(H) */
			sscanf(optarg, "%c", &FormatCharacter);
			break;

		case 'g':	/* Date and time to switch back into / out of DST active. */
			sscanf(optarg, "%2d%2d%2d%2d%2d", &DstSwitchYear, &DstSwitchMonth, &DstSwitchDayOfMonth,
			    &DstSwitchHour, &DstSwitchMinute);
729
			DstSwitchFlag = true;
730 731 732 733 734 735 736 737 738 739 740 741
			break;

		case 'h':
		case 'H':
		case '?':
			Help ();
			exit(-1);
			break;

		case 'i':	/* Insert (add) a leap second at the end of the specified minute. */
			sscanf(optarg, "%2d%2d%2d%2d%2d", &LeapYear, &LeapMonth, &LeapDayOfMonth,
			    &LeapHour, &LeapMinute);
742 743
			InsertLeapSecond = true;
			DeleteLeapSecond = false;
744 745 746
			break;
			
		case 'j':
747
			EnableRateCorrection = false;
748 749 750 751
			break;

		case 'k':
			sscanf (optarg, "%d", &RateCorrection);
752
			EnableRateCorrection = false;
753 754
			if  (RateCorrection < 0)
				{
755 756
				RemoveCycle = true;
				AddCycle = false;
757 758 759 760 761 762 763 764
				
				if  (Verbose)
					printf ("\n> Forcing rate correction removal of cycle...\n");
				}
			else
				{
				if  (RateCorrection > 0)
					{
765 766
					RemoveCycle = false;
					AddCycle = true;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
				
					if  (Verbose)
						printf ("\n> Forcing rate correction addition of cycle...\n");
					}
				}
			break;

		case 'l':	/* use time offset from UTC */
			sscanf(optarg, "%f", &UseOffsetHoursFloat);
			UseOffsetSecondsFloat = UseOffsetHoursFloat * (float) SECONDS_PER_HOUR;
			UseOffsetSecondsInt = (int) (UseOffsetSecondsFloat + 0.5);
			break;

		case 'o':	/* Set IEEE 1344 time offset in hours - positive or negative, to the half hour */
			sscanf(optarg, "%f", &TimeOffset);
			if  (TimeOffset >= -0.2)
				{
				OffsetSignBit = 0;

				if  (TimeOffset > 0)
					{
					OffsetOnes    = TimeOffset;

					if  ( (TimeOffset - floor(TimeOffset)) >= 0.4)
						OffsetHalf = 1;
					else
						OffsetHalf = 0;
					}
				else
					{
					OffsetOnes    = 0;
					OffsetHalf    = 0;
					}
				}
			else
				{
				OffsetSignBit = 1;
				OffsetOnes    = -TimeOffset;

				if  ( (ceil(TimeOffset) - TimeOffset) >= 0.4)
					OffsetHalf = 1;
				else
					OffsetHalf = 0;
				}

			/*printf ("\nGot TimeOffset = %3.1f, OffsetSignBit = %d, OffsetOnes = %d, OffsetHalf = %d...\n",
					TimeOffset, OffsetSignBit, OffsetOnes, OffsetHalf);
			*/
			break;

		case 'q':	/* Hex quality code 0 to 0x0F - 0 = maximum, 0x0F = no lock */
			sscanf(optarg, "%x", &TimeQuality);
			TimeQuality &= 0x0F;
			/*printf ("\nGot TimeQuality = 0x%1X...\n", TimeQuality);
			*/
			break;

		case 'r':	/* sample rate (nominally 8000, integer close to 8000 I hope) */
			sscanf(optarg, "%d", &SetSampleRate);
			break;

		case 's':	/* set leap warning bit (WWV/H only) */
			leap++;
			break;

		case 't':	/* select WWVH sync frequency */
			tone = 1200;
			break;

		case 'u':	/* set DUT1 offset (-7 to +7) */
			sscanf(optarg, "%d", &dut1);
			if (dut1 < 0)
				dut1 = abs(dut1);
			else
				dut1 |= 0x8;
			break;

#ifndef  HAVE_SYS_SOUNDCARD_H
		case 'v':	/* set output level (0-255) */
			sscanf(optarg, "%d", &level);
			break;
#endif

		case 'x':	/* Turn off verbose output. */
851
			Verbose = false;
852 853 854 855 856 857 858 859 860
			break;

		case 'y':	/* Set initial date and time */
			sscanf(optarg, "%2d%2d%2d%2d%2d%2d", &Year, &Month, &DayOfMonth,
			    &Hour, &Minute, &Second);
			utc++;
			break;

		case 'z':	/* Turn on Debug output (also turns on Verbose below) */
861
			Debug = true;
862 863 864 865 866 867 868 869 870 871
			break;

		default:
			printf("Invalid option \"%c\", aborting...\n", temp);
			exit (-1);
			break;
		}
	}

	if  (Debug)
872
	    Verbose = true;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

	if  (InsertLeapSecond || DeleteLeapSecond)
		{
		LeapDayOfYear = ConvertMonthDayToDayOfYear (LeapYear, LeapMonth, LeapDayOfMonth);

		if	(Debug)
			{
			printf ("\nHave request for leap second %s at year %4d day %3d at %2.2dh%2.2d....\n",\
					DeleteLeapSecond ? "DELETION" : (InsertLeapSecond ? "ADDITION" : "( error ! )" ),
					LeapYear, LeapDayOfYear, LeapHour, LeapMinute);
			}
		}

	if	(DstSwitchFlag)
		{
		DstSwitchDayOfYear = ConvertMonthDayToDayOfYear (DstSwitchYear, DstSwitchMonth, DstSwitchDayOfMonth);

		/* Figure out time of minute previous to DST switch, so can put up warning flag in IEEE 1344 */
		DstSwitchPendingYear		= DstSwitchYear;
		DstSwitchPendingDayOfYear	= DstSwitchDayOfYear;
		DstSwitchPendingHour		= DstSwitchHour;
		DstSwitchPendingMinute		= DstSwitchMinute - 1;
		if 	(DstSwitchPendingMinute < 0)
			{
			DstSwitchPendingMinute = 59;
			DstSwitchPendingHour--;
			if	(DstSwitchPendingHour < 0)
				{
				DstSwitchPendingHour = 23;
				DstSwitchPendingDayOfYear--;
				if	(DstSwitchPendingDayOfYear < 1)
					{
					DstSwitchPendingYear--;
					}
				}
			}

		if	(Debug)
			{
			printf ("\nHave DST switch request for year %4d day %3d at %2.2dh%2.2d,",
					DstSwitchYear, DstSwitchDayOfYear, DstSwitchHour, DstSwitchMinute);
			printf ("\n    so will have warning at year %4d day %3d at %2.2dh%2.2d.\n",
					DstSwitchPendingYear, DstSwitchPendingDayOfYear, DstSwitchPendingHour, DstSwitchPendingMinute);
			}
		}

	switch (tolower(FormatCharacter)) {
	case 'i':
		printf ("\nFormat is IRIG-1998 (no year coded)...\n\n");
		encode = IRIG;
923 924
		IrigIncludeYear = false;
		IrigIncludeIeee = false;
925 926 927 928 929
		break;

	case '2':
		printf ("\nFormat is IRIG-2004 (BCD year coded)...\n\n");
		encode = IRIG;
930 931
		IrigIncludeYear = true;
		IrigIncludeIeee = false;
932 933 934 935 936
		break;

	case '3':
		printf ("\nFormat is IRIG with IEEE-1344 (BCD year coded, and more control functions)...\n\n");
		encode = IRIG;
937 938
		IrigIncludeYear = true;
		IrigIncludeIeee = true;
939 940 941 942 943
		break;

	case '4':
		printf ("\nFormat is unmodulated IRIG with IEEE-1344 (BCD year coded, and more control functions)...\n\n");
		encode = IRIG;
944 945
		IrigIncludeYear = true;
		IrigIncludeIeee = true;
946

947 948
		Unmodulated = true;
		UnmodulatedInverted = false;
949 950 951 952 953
		break;

	case '5':
		printf ("\nFormat is inverted unmodulated IRIG with IEEE-1344 (BCD year coded, and more control functions)...\n\n");
		encode = IRIG;
954 955
		IrigIncludeYear = true;
		IrigIncludeIeee = true;
956

957 958
		Unmodulated = true;
		UnmodulatedInverted = true;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		break;

	case 'w':
		printf ("\nFormat is WWV(H)...\n\n");
		encode = WWV;
		break;

	default:
		printf ("\n\nUnexpected format value of \'%c\', cannot parse, aborting...\n\n", FormatCharacter);
		exit (-1);
		break;
	}

	/*
	 * Open audio device and set options
	 */
	fd = open(device, O_WRONLY);
	if (fd <= 0) {
		printf("Unable to open audio device \"%s\", aborting: %s\n", device, strerror(errno));
		exit(1);
	}

#ifdef  HAVE_SYS_SOUNDCARD_H
	/* First set coding type */
	AudioFormat = AFMT_MU_LAW;
	if (ioctl(fd, SNDCTL_DSP_SETFMT, &AudioFormat)==-1)
	{ /* Fatal error */
	printf ("\nUnable to set output format, aborting...\n\n");
	exit(-1);
	}

	if  (AudioFormat != AFMT_MU_LAW)
	{
	printf ("\nUnable to set output format for mu law, aborting...\n\n");
	exit(-1);
	}

	/* Next set number of channels */
	MonoStereo = MONO;	/* Mono */
	if (ioctl(fd, SNDCTL_DSP_STEREO, &MonoStereo)==-1)
	{ /* Fatal error */
	printf ("\nUnable to set mono/stereo, aborting...\n\n");
	exit(-1);
	}

	if (MonoStereo != MONO)
	{
	printf ("\nUnable to set mono/stereo for mono, aborting...\n\n");
	exit(-1);
	}

	/* Now set sample rate */
	SampleRate = SetSampleRate;
	if (ioctl(fd, SNDCTL_DSP_SPEED, &SampleRate)==-1)
	{ /* Fatal error */
	printf ("\nUnable to set sample rate to %d, returned %d, aborting...\n\n", SetSampleRate, SampleRate);
	exit(-1);
	}

	SampleRateDifference = SampleRate - SetSampleRate;

	if  (SampleRateDifference < 0)
		SampleRateDifference = - SampleRateDifference;

	/* Fixed allowable sample rate error 0.1% */
	if (SampleRateDifference > (SetSampleRate/1000))
	{
	printf ("\nUnable to set sample rate to %d, result was %d, more than 0.1 percent, aborting...\n\n", SetSampleRate, SampleRate);
	exit(-1);
	}
	else
	{
	/* printf ("\nAttempt to set sample rate to %d, actual %d...\n\n", SetSampleRate, SampleRate); */
	}
#else
	rval = ioctl(fd, AUDIO_GETINFO, &info);
	if (rval < 0) {
		printf("\naudio control %s", strerror(errno));
		exit(0);
	}
	info.play.port = port;
	info.play.gain = level;
	info.play.sample_rate = SetSampleRate;
	info.play.channels = 1;
	info.play.precision = 8;
	info.play.encoding = AUDIO_ENCODING_ULAW;
	printf("\nport %d gain %d rate %d chan %d prec %d encode %d\n",
	    info.play.port, info.play.gain, info.play.sample_rate,
	    info.play.channels, info.play.precision,
	    info.play.encoding);
	ioctl(fd, AUDIO_SETINFO, &info);
#endif

 	/*
	 * Unless specified otherwise, read the system clock and
	 * initialize the time.
	 */
1056
	clock_gettime(CLOCK_REALTIME, &TimeValue);		// Now always read the system time to keep "real time" of operation.
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	NowRealTime = BaseRealTime = SecondsPartOfTime = TimeValue.tv_sec;
	SecondsRunningSimulationTime = 0;	// Just starting simulation, running zero seconds as of now.
	StabilityCount = 0;					// No stability yet.

	if	(utc)
		{
		DayOfYear = ConvertMonthDayToDayOfYear (Year, Month, DayOfMonth);
		}
	else
		{
1067
		struct tm tmbuf;
1068 1069 1070 1071 1072 1073
		/* Apply offset to time. */
		if	(UseOffsetSecondsInt >= 0)
			SecondsPartOfTime += (time_t)   UseOffsetSecondsInt;
		else
			SecondsPartOfTime -= (time_t) (-UseOffsetSecondsInt);

1074
		TimeStructure = gmtime_r(&SecondsPartOfTime, &tmbuf);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		Minute = TimeStructure->tm_min;
		Hour = TimeStructure->tm_hour;
		DayOfYear = TimeStructure->tm_yday + 1;
		Year = TimeStructure->tm_year % 100;
		Second = TimeStructure->tm_sec;

		/*
		 * Delay the first second so the generator is accurately
		 * aligned with the system clock within one sample (125
		 * microseconds ).
		 */
1086
		delay(SECOND - TimeValue.tv_nsec * 8 / 1000000);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		}

	StraightBinarySeconds = Second + (Minute * SECONDS_PER_MINUTE) + (Hour * SECONDS_PER_HOUR);

	memset(code, 0, sizeof(code));
	switch (encode) {

	/*
	 * For WWV/H and default time, carefully set the signal
	 * generator seconds number to agree with the current time.
	 */
	case WWV:
		printf("WWV time signal, starting point:\n");
		printf(" Year = %02d, Day of year = %03d, Time = %02d:%02d:%02d, Minute tone = %d Hz, Hour tone = %d Hz.\n",
		    Year, DayOfYear, Hour, Minute, Second, tone, HourTone);
1102
		snprintf(code, sizeof(code), "%01d%03d%02d%02d%01d",
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		    Year / 10, DayOfYear, Hour, Minute, Year % 10);
		if  (Verbose)
			{
		    printf("\n Year = %2.2d, Day of year = %3d, Time = %2.2d:%2.2d:%2.2d, Code = %s", 
				Year, DayOfYear, Hour, Minute, Second, code);

				if  ((EnableRateCorrection) || (RemoveCycle) || (AddCycle))
				printf (", CountOfSecondsSent = %d, TotalCyclesAdded = %d, TotalCyclesRemoved = %d\n", CountOfSecondsSent, TotalCyclesAdded, TotalCyclesRemoved);
			else
				printf ("\n");
			}

		ptr = 8;
		for (BitNumber = 0; BitNumber <= Second; BitNumber++) {
			if (progx[BitNumber].sw == DEC)
				ptr--;
		}
		break;

	/*
	 * For IRIG the signal generator runs every second, so requires
	 * no additional alignment.
	 */
	case IRIG:
		printf ("IRIG-B time signal, starting point:\n");
		printf (" Year = %02d, Day of year = %03d, Time = %02d:%02d:%02d, Straight binary seconds (SBS) = %05d / 0x%04X.\n",
		    Year, DayOfYear, Hour, Minute, Second, StraightBinarySeconds, StraightBinarySeconds);
		printf ("\n");
		if  (Verbose)
		    {
    		printf ("Codes: \".\" = marker/position indicator, \"-\" = zero dummy bit, \"0\" = zero bit, \"1\" = one bit.\n");
			if  ((EnableRateCorrection) || (AddCycle) || (RemoveCycle))
				{
				printf ("       \"o\" = short zero, \"*\" = long zero, \"x\" = short one, \"+\" = long one.\n");
				}
	    	printf ("Numerical values are time order reversed in output to make it easier to read.\n");
    		/*                 111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999 */
	    	/*       0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789 */
		    printf ("\n");
    		printf ("Legend of output codes:\n");
	    	//printf ("\n");
		    //printf ("|  StraightBinSecs  | IEEE_1344_Control |   Year  |    Day_of_Year    |  Hours  | Minutes |Seconds |\n");
    		//printf ("|  ---------------  | ----------------- |   ----  |    -----------    |  -----  | ------- |------- |\n");
	    	//printf ("|                   |                   |         |                   |         |         |        |\n");
	    	}
		break;
	}

	/*
	 * Run the signal generator to generate new timecode strings
	 * once per minute for WWV/H and once per second for IRIG.
	 */
	for (CountOfSecondsSent=0; ((SecondsToSend==0) || (CountOfSecondsSent<SecondsToSend)); CountOfSecondsSent++)
		{
		if  ((encode == IRIG) && (((Second % 20) == 0) || (CountOfSecondsSent == 0)))
			{
	    	printf ("\n");

			printf (" Year = %02d, Day of year = %03d, Time = %02d:%02d:%02d, Straight binary seconds (SBS) = %05d / 0x%04X.\n",
			    Year, DayOfYear, Hour, Minute, Second, StraightBinarySeconds, StraightBinarySeconds);
			if  ((EnableRateCorrection) || (RemoveCycle) || (AddCycle))
				{
				printf (" CountOfSecondsSent = %d, TotalCyclesAdded = %d, TotalCyclesRemoved = %d\n", CountOfSecondsSent, TotalCyclesAdded, TotalCyclesRemoved);
				if  ((CountOfSecondsSent != 0) && ((TotalCyclesAdded != 0) || (TotalCyclesRemoved != 0)))
					{
					RatioError = ((float) (TotalCyclesAdded - TotalCyclesRemoved)) / (1000.0 * (float) CountOfSecondsSent);
					printf (" Adjusted by %2.1f%%, apparent send frequency is %4.2f Hz not %d Hz.\n\n", 
									RatioError*100.0, (1.0+RatioError)*((float) SetSampleRate), SetSampleRate);
					}
				}
			else
				printf ("\n");

		    /* printf ("|Seconds | Minutes |  Hours  |    Day_of_Year    |   Year  | IEEE_1344_Control |  StraightBinSecs  |\n");
    		printf ("|------- | ------- |  -----  |    -----------    |   ----  | ----------------- |-------------------|\n");
	    	printf ("|        |         |         |                   |         |                   |                   |\n");*/
		    printf ("|  StraightBinSecs  | IEEE_1344_Control |   Year  |    Day_of_Year    |  Hours  | Minutes |Seconds |\n");
    		printf ("|  ---------------  | ----------------- |   ----  |    -----------    |  -----  | ------- |------- |\n");
	    	printf ("|                   |                   |         |                   |         |         |        |\n");
			}

		if  (RemoveCycle)
			{
			RateCorrection = -1;
			TotalSecondsCorrected ++;
			}
		else
			{
			if  (AddCycle)
				{
				TotalSecondsCorrected ++;
				RateCorrection = +1;
				}
			else
				RateCorrection = 0;
			}

		/*
		 * Crank the state machine to propagate carries to the
		 * year of century. Note that we delayed up to one
		 * second for alignment after reading the time, so this
		 * is the next second.
		 */

		if  (LeapState == LEAPSTATE_NORMAL)
			{
			/* If on the second of a leap (second 59 in the specified minute), then add or delete a second */
			if  ((Year == LeapYear) && (DayOfYear == LeapDayOfYear) && (Hour == LeapHour) && (Minute == LeapMinute))
				{
				/* To delete a second, which means we go from 58->60 instead of 58->59->00. */
				if  ((DeleteLeapSecond) && (Second == 58))
					{
					LeapState = LEAPSTATE_DELETING;

					if	(Debug)
						printf ("\n<--- Ready to delete a leap second...\n");
					}
				else
					{	/* Delete takes precedence over insert. */
					/* To add a second, which means we go from 59->60->00 instead of 59->00. */
					if  ((InsertLeapSecond) && (Second == 59))
						{
						LeapState = LEAPSTATE_INSERTING;

						if	(Debug)
							printf ("\n<--- Ready to insert a leap second...\n");
						}
					}
				}
			}

		switch (LeapState)
			{
			case LEAPSTATE_NORMAL:
				Second = (Second + 1) % 60;
				break;

			case LEAPSTATE_DELETING:
				Second = 0;
				LeapState = LEAPSTATE_NORMAL;

				if	(Debug)
					printf ("\n<--- Deleting a leap second...\n");
				break;

			case LEAPSTATE_INSERTING:
				Second = 60;
				LeapState = LEAPSTATE_ZERO_AFTER_INSERT;

				if	(Debug)
					printf ("\n<--- Inserting a leap second...\n");
				break;

			case LEAPSTATE_ZERO_AFTER_INSERT:
				Second = 0;
				LeapState = LEAPSTATE_NORMAL;

				if	(Debug)
					printf ("\n<--- Inserted a leap second, now back to zero...\n");
				break;

			default:
				printf ("\n\nLeap second state invalid value of %d, aborting...", LeapState);
				exit (-1);
				break;
			}

		/* Check for second rollover, increment minutes and ripple upward if required. */
		if (Second == 0) {
			Minute++;
			if (Minute >= 60) {
				Minute = 0;
				Hour++;
			}

			/* Check for activation of DST switch. */
			/* If DST is active, this would mean that at the appointed time, we de-activate DST, */
			/* which translates to going backward an hour (repeating the last hour). */
			/* If DST is not active, this would mean that at the appointed time, we activate DST, */
			/* which translates to going forward an hour (skipping the next hour). */
			if	(DstSwitchFlag)
				{
				/* The actual switch happens on the zero'th second of the actual minute specified. */
				if	((Year == DstSwitchYear) && (DayOfYear == DstSwitchDayOfYear) && (Hour == DstSwitchHour) && (Minute == DstSwitchMinute))
					{
					if  (DstFlag == 0)
						{	/* DST flag is zero, not in DST, going to DST, "spring ahead", so increment hour by two instead of one. */
						Hour++;
						DstFlag = 1;

						/* Must adjust offset to keep consistent with UTC. */
						/* Here we have to increase offset by one hour.  If it goes from negative to positive, then we fix that. */
						if	(OffsetSignBit == 0)
							{	/* Offset is positive */
							if	(OffsetOnes == 0x0F)
								{
								OffsetSignBit = 1;
								OffsetOnes    = (OffsetHalf == 0) ? 8 : 7;
								}
							else
								OffsetOnes++;
							}
						else
							{	/* Offset is negative */
							if  (OffsetOnes == 0)
								{
								OffsetSignBit = 0;
								OffsetOnes    = (OffsetHalf == 0) ? 1 : 0;
								}
							else
								OffsetOnes--;
							}

						if	(Debug)
							printf ("\n<--- DST activated, spring ahead an hour, new offset !...\n");
						}
					else
						{	/* DST flag is non zero, in DST, going out of DST, "fall back", so no increment of hour. */
						Hour--;
						DstFlag = 0;

						/* Must adjust offset to keep consistent with UTC. */
						/* Here we have to reduce offset by one hour.  If it goes negative, then we fix that. */
						if	(OffsetSignBit == 0)
							{	/* Offset is positive */
							if  (OffsetOnes == 0)
								{
								OffsetSignBit = 1;
								OffsetOnes    = (OffsetHalf == 0) ? 1 : 0;
								}
							else
								OffsetOnes--;
							}
						else
							{	/* Offset is negative */
							if	(OffsetOnes == 0x0F)
								{
								OffsetSignBit = 0;
								OffsetOnes    = (OffsetHalf == 0) ? 8 : 7;
								}
							else
								OffsetOnes++;
							}

						if	(Debug)
							printf ("\n<--- DST de-activated, fall back an hour!...\n");
						}

1351
					DstSwitchFlag = false;	/* One time deal, not intended to run this program past two switches... */
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
					}
				}

			if (Hour >= 24) {
				/* Modified, just in case dumb case where activating DST advances 23h59:59 -> 01h00:00 */
				Hour = Hour % 24;
				DayOfYear++;
			}

			/*
			 * At year rollover check for leap second.
			 */
			if (DayOfYear >= (Year & 0x3 ? 366 : 367)) {
				if (leap) {
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("\nLeap!");
					leap = 0;
				}
				DayOfYear = 1;
				Year++;
			}
			if (encode == WWV) {
1375 1376 1377
				snprintf(code, sizeof(code),
				    "%01d%03d%02d%02d%01d", Year / 10,
				    DayOfYear, Hour, Minute, Year % 10);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
				if  (Verbose)
				    printf("\n Year = %2.2d, Day of year = %3d, Time = %2.2d:%2.2d:%2.2d, Code = %s", 
						Year, DayOfYear, Hour, Minute, Second, code);

				if  ((EnableRateCorrection) || (RemoveCycle) || (AddCycle))
					{
					printf (", CountOfSecondsSent = %d, TotalCyclesAdded = %d, TotalCyclesRemoved = %d\n", CountOfSecondsSent, TotalCyclesAdded, TotalCyclesRemoved);
					if  ((CountOfSecondsSent != 0) && ((TotalCyclesAdded != 0) || (TotalCyclesRemoved != 0)))
						{
						RatioError = ((float) (TotalCyclesAdded - TotalCyclesRemoved)) / (1000.0 * (float) CountOfSecondsSent);
						printf (" Adjusted by %2.1f%%, apparent send frequency is %4.2f Hz not %d Hz.\n\n", 
										RatioError*100.0, (1.0+RatioError)*((float) SetSampleRate), SetSampleRate);
						}
					}
				else
					printf ("\n");

				ptr = 8;
			}
		}	/* End of "if  (Second == 0)" */

		/* After all that, if we are in the minute just prior to a leap second, warn of leap second pending */
		/* and of the polarity */
		if  ((Year == LeapYear) && (DayOfYear == LeapDayOfYear) && (Hour == LeapHour) && (Minute == LeapMinute))
			{
1403
			LeapSecondPending = true;
1404 1405 1406 1407
			LeapSecondPolarity = DeleteLeapSecond;
			}
		else
			{
1408 1409
			LeapSecondPending = false;
			LeapSecondPolarity = false;
1410 1411 1412 1413 1414 1415 1416
			}

		/* Notification through IEEE 1344 happens during the whole minute previous to the minute specified. */
		/* The time of that minute has been previously calculated. */
		if	((Year == DstSwitchPendingYear) && (DayOfYear == DstSwitchPendingDayOfYear) &&
					(Hour == DstSwitchPendingHour) && (Minute == DstSwitchPendingMinute))
			{
1417
			DstPendingFlag = true;
1418 1419 1420
			}
		else
			{
1421
			DstPendingFlag = false;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
			}


		StraightBinarySeconds = Second + (Minute * SECONDS_PER_MINUTE) + (Hour * SECONDS_PER_HOUR);

		if (encode == IRIG) {
			if  (IrigIncludeIeee)
				{
				if  ((OffsetOnes == 0) && (OffsetHalf == 0))
					OffsetSignBit = 0;

				ControlFunctions = (LeapSecondPending == 0 ? 0x00000 : 0x00001) | (LeapSecondPolarity == 0 ? 0x00000 : 0x00002)
						| (DstPendingFlag == 0 ? 0x00000 : 0x00004) | (DstFlag == 0 ? 0x00000 : 0x00008)
						| (OffsetSignBit == 0 ? 0x00000 : 0x00010)  | ((OffsetOnes & 0x0F) << 5)           | (OffsetHalf == 0 ? 0x00000 : 0x00200)
						| ((TimeQuality & 0x0F) << 10);
				/* if  (Verbose)
				        printf ("\nDstFlag = %d, OffsetSignBit = %d, OffsetOnes = %d, OffsetHalf = %d, TimeQuality = 0x%1.1X ==> ControlFunctions = 0x%5.5X...",
						    DstFlag, OffsetSignBit, OffsetOnes, OffsetHalf, TimeQuality, ControlFunctions);
				*/
				}
			else
				ControlFunctions = 0;

			/*
1446 1447
						      YearDay HourMin Sec
			snprintf(code, sizeof(code), "%04x%04d%06d%02d%02d%02d",
1448 1449 1450
				0, Year, DayOfYear, Hour, Minute, Second);
			*/
			if  (IrigIncludeYear) {
1451 1452 1453 1454 1455 1456 1457 1458 1459
				snprintf(ParityString, sizeof(ParityString),
				    "%04X%02d%04d%02d%02d%02d",
				    ControlFunctions & 0x7FFF, Year,
				    DayOfYear, Hour, Minute, Second);
			} else {
				snprintf(ParityString, sizeof(ParityString),
				    "%04X%02d%04d%02d%02d%02d",
				    ControlFunctions & 0x7FFF,
				    0, DayOfYear, Hour, Minute, Second);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
			}

			if  (IrigIncludeIeee)
				{
				ParitySum = 0;
				for (StringPointer=ParityString; *StringPointer!=NUL; StringPointer++)
					{
					switch (toupper(*StringPointer))
						{
						case '1':
						case '2':
						case '4':
						case '8':
							ParitySum += 1;
							break;

						case '3':
						case '5':
						case '6':
						case '9':
						case 'A':
						case 'C':
							ParitySum += 2;
							break;

						case '7':
						case 'B':
						case 'D':
						case 'E':
							ParitySum += 3;
							break;

						case 'F':
							ParitySum += 4;
							break;
						}
					}

				if  ((ParitySum & 0x01) == 0x01)
					ParityValue = 0x01;
				else
					ParityValue = 0;
				}
			else
				ParityValue = 0;

			ControlFunctions |= ((ParityValue & 0x01) << 14);

			if  (IrigIncludeYear) {
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
				snprintf(code, sizeof(code),
				    /* YearDay HourMin Sec */
				    "%05X%05X%02d%04d%02d%02d%02d",
				    StraightBinarySeconds,
				    ControlFunctions, Year, DayOfYear,
				    Hour, Minute, Second);
			} else {
				snprintf(code, sizeof(code),
				    /* YearDay HourMin Sec */
				    "%05X%05X%02d%04d%02d%02d%02d",
				    StraightBinarySeconds,
				    ControlFunctions, 0, DayOfYear,
				    Hour, Minute, Second);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
			}

			if  (Debug)
				printf("\nCode string: %s, ParityString = %s, ParitySum = 0x%2.2X, ParityValue = %d, DstFlag = %d...\n", code, ParityString, ParitySum, ParityValue, DstFlag);

			ptr = strlen(code)-1;
		}

		/*
		 * Generate data for the second
		 */
1533
		switch (encode) {
1534 1535 1536 1537 1538 1539 1540

		/*
		 * The IRIG second consists of 20 BCD digits of width-
		 * modulateod pulses at 2, 5 and 8 ms and modulated 50
		 * percent on the 1000-Hz carrier.
		 */
		case IRIG:
1541 1542
			/* Initialize the output string */
			OutputDataString[0] = '\0';
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

			for (BitNumber = 0; BitNumber < 100; BitNumber++) {
				FrameNumber = (BitNumber/10) + 1;
				switch (FrameNumber)
					{
					case 1:
						/* bits 0 to 9, first frame */
						sw  = progz[BitNumber % 10].sw;
						arg = progz[BitNumber % 10].arg;
						break;

					case 2:
					case 3:
					case 4:
					case 5:
					case 6:
						/* bits 10 to 59, second to sixth frame */
						sw  = progy[BitNumber % 10].sw;
						arg = progy[BitNumber % 10].arg;
						break;

					case 7:
						/* bits 60 to 69, seventh frame */
						sw  = progw[BitNumber % 10].sw;
						arg = progw[BitNumber % 10].arg;
						break;

					case 8:
						/* bits 70 to 79, eighth frame */
						sw  = progv[BitNumber % 10].sw;
						arg = progv[BitNumber % 10].arg;
						break;

					case 9:
						/* bits 80 to 89, ninth frame */
						sw  = progw[BitNumber % 10].sw;
						arg = progw[BitNumber % 10].arg;
						break;

					case 10:
						/* bits 90 to 99, tenth frame */
						sw  = progu[BitNumber % 10].sw;
						arg = progu[BitNumber % 10].arg;
						break;

					default:
						/* , Unexpected values of FrameNumber */
						printf ("\n\nUnexpected value of FrameNumber = %d, cannot parse, aborting...\n\n", FrameNumber);
						exit (-1);
						break;
					}

				switch(sw) {

				case DECC:	/* decrement pointer and send bit. */
					ptr--;
				case COEF:	/* send BCD bit */
					AsciiValue = toupper(code[ptr]);
					HexValue   = isdigit(AsciiValue) ? AsciiValue - '0' : (AsciiValue - 'A')+10;
					/* if  (Debug) {
						if  (ptr != OldPtr) {
						if  (Verbose)
						    printf("\n(%c->%X)", AsciiValue, HexValue);
						OldPtr = ptr;
						}
					}
					*/
					// OK, adjust all unused bits in hundreds of days.
					if  ((FrameNumber == 5) && ((BitNumber % 10) > 1))
						{
						if  (RateCorrection < 0)
							{	// Need to remove cycles to catch up.
							if  ((HexValue & arg) != 0) 
								{
								if  (Unmodulated)
									{
									poop(M5, 1000, HIGH, UnmodulatedInverted);
									poop(M5-1, 1000, LOW,  UnmodulatedInverted);

									TotalCyclesRemoved += 1;
									}
								else
									{
									peep(M5, 1000, HIGH);
									peep(M5-1, 1000, LOW);

									TotalCyclesRemoved += 1;
									}
1631
								strlcat(OutputDataString, "x", OUTPUT_DATA_STRING_LENGTH);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
								}
							else 
								{
								if	(Unmodulated)
									{
									poop(M2, 1000, HIGH, UnmodulatedInverted);
									poop(M8-1, 1000, LOW,  UnmodulatedInverted);

									TotalCyclesRemoved += 1;
									}
								else
									{
									peep(M2, 1000, HIGH);
									peep(M8-1, 1000, LOW);

									TotalCyclesRemoved += 1;
									}
1649
								strlcat(OutputDataString, "o", OUTPUT_DATA_STRING_LENGTH);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
								}
							}	// End of true clause for "if  (RateCorrection < 0)"
						else
							{	// Else clause for "if  (RateCorrection < 0)"
							if  (RateCorrection > 0)
								{	// Need to add cycles to slow back down.
								if  ((HexValue & arg) != 0) 
									{
									if  (Unmodulated)
										{
										poop(M5, 1000, HIGH, UnmodulatedInverted);
										poop(M5+1, 1000, LOW,  UnmodulatedInverted);

										TotalCyclesAdded += 1;
										}
									else
										{
										peep(M5, 1000, HIGH);
										peep(M5+1, 1000, LOW);

										TotalCyclesAdded += 1;
										}
1672
									strlcat(OutputDataString, "+", OUTPUT_DATA_STRING_LENGTH);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
									}
								else 
									{
									if	(Unmodulated)
										{
										poop(M2, 1000, HIGH, UnmodulatedInverted);
										poop(M8+1, 1000, LOW,  UnmodulatedInverted);

										TotalCyclesAdded += 1;
										}
									else
										{
										peep(M2, 1000, HIGH);
										peep(M8+1, 1000, LOW);

										TotalCyclesAdded += 1;
										}
1690
									strlcat(OutputDataString, "*", OUTPUT_DATA_STRING_LENGTH);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
									}
								}	// End of true clause for "if  (RateCorrection > 0)"
							else
								{	// Else clause for "if  (RateCorrection > 0)"
								// Rate is OK, just do what you feel!
								if  ((HexValue & arg) != 0) 
									{
									if  (Unmodulated)
										{
										poop(M5, 1000, HIGH, UnmodulatedInverted);
										poop(M5, 1000, LOW,  UnmodulatedInverted);
										}
									else
										{
										peep(M5, 1000, HIGH);
										peep(M5, 1000, LOW);
										}
1708
									strlcat(OutputDataString, "1", OUTPUT_DATA_STRING_LENGTH);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
									}
								else 
									{
									if	(Unmodulated)
										{
										poop(M2, 1000, HIGH, UnmodulatedInverted);
										poop(M8, 1000, LOW,  UnmodulatedInverted);
										}
									else
										{
										peep(M2, 1000, HIGH);
										peep(M8, 1000, LOW);
										}
1722
									strlcat(OutputDataString, "0", OUTPUT_DATA_STRING_LENGTH);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
									}
								}	// End of else clause for "if  (RateCorrection > 0)"
							}	// End of else claues for "if  (RateCorrection < 0)"
						}	// End of true clause for "if  ((FrameNumber == 5) && (BitNumber == 8))"
					else
						{	// Else clause for "if  ((FrameNumber == 5) && (BitNumber == 8))"
						if  ((HexValue & arg) != 0) 
							{
							if  (Unmodulated)
								{
								poop(M5, 1000, HIGH, UnmodulatedInverted);
								poop(M5, 1000, LOW,  UnmodulatedInverted);
								}
							else
								{
								peep(M5, 1000, HIGH);
								peep(M5, 1000, LOW);
								}
1741
							strlcat(OutputDataString, "1", OUTPUT_DATA_STRING_LENGTH);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
							}
						else 
							{
							if	(Unmodulated)
								{
								poop(M2, 1000, HIGH, UnmodulatedInverted);
								poop(M8, 1000, LOW,  UnmodulatedInverted);
								}
							else
								{
								peep(M2, 1000, HIGH);
								peep(M8, 1000, LOW);
								}
1755
							strlcat(OutputDataString, "0", OUTPUT_DATA_STRING_LENGTH);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
							}
						} // end of else clause for "if  ((FrameNumber == 5) && (BitNumber == 8))"
					break;

				case DECZ:	/* decrement pointer and send zero bit */
					ptr--;
					if	(Unmodulated)
						{
						poop(M2, 1000, HIGH, UnmodulatedInverted);
						poop(M8, 1000, LOW,  UnmodulatedInverted);
						}
					else
						{
						peep(M2, 1000, HIGH);
						peep(M8, 1000, LOW);
						}
1772
					strlcat(OutputDataString, "-", OUTPUT_DATA_STRING_LENGTH);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
					break;

				case DEC:	/* send marker/position indicator IM/PI bit */
					ptr--;
				case NODEC:	/* send marker/position indicator IM/PI bit but no decrement pointer */
				case MIN:	/* send "second start" marker/position indicator IM/PI bit */
					if  (Unmodulated)
						{
						poop(arg,      1000, HIGH, UnmodulatedInverted);
						poop(10 - arg, 1000, LOW,  UnmodulatedInverted);
						}
					else
						{
						peep(arg,      1000, HIGH);
						peep(10 - arg, 1000, LOW);
						}
1789
					strlcat(OutputDataString, ".", OUTPUT_DATA_STRING_LENGTH);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
					break;

				default:
					printf ("\n\nUnknown state machine value \"%d\", unable to continue, aborting...\n\n", sw);
					exit (-1);
					break;
				}
				if (ptr < 0)
					break;
			}
			ReverseString ( OutputDataString );
			if  (Verbose)
				{
    			printf("%s", OutputDataString);
				if  (RateCorrection > 0)
					printf(" fast\n");
				else
					{
					if  (RateCorrection < 0)
						printf (" slow\n");
					else
						printf ("\n");
					}
				}
			break;

		/*
		 * The WWV/H second consists of 9 BCD digits of width-
		 * modulateod pulses 200, 500 and 800 ms at 100-Hz.
		 */
		case WWV:
			sw = progx[Second].sw;
			arg = progx[Second].arg;
			switch(sw) {

			case DATA:		/* send data bit */
				WWV_Second(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case DATAX:		/* send data bit */
				WWV_SecondNoTick(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case COEF:		/* send BCD bit */
				if (code[ptr] & arg) {
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
				} else {
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
				}
				break;

			case LEAP:		/* send leap bit */
				if (leap) {
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("L");
				} else {
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
				}
				break;

			case DEC:		/* send data bit */
				ptr--;
				WWV_Second(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case DECX:		/* send data bit with no tick */
				ptr--;
				WWV_SecondNoTick(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case MIN:		/* send minute sync */
				if  (Minute == 0)
					{
					peep(arg, HourTone, HIGH);

					if  (RateCorrection < 0)
						{
						peep( 990 - arg, HourTone, OFF);
						TotalCyclesRemoved += 10;

						if  (Debug)
							printf ("\n* Shorter Second: ");
						}
					else
						{
						if	(RateCorrection > 0)
							{
							peep(1010 - arg, HourTone, OFF);

							TotalCyclesAdded += 10;

							if  (Debug)
								printf ("\n* Longer Second: ");
							}
						else
							{
							peep(1000 - arg, HourTone, OFF);
							}
						}

					if  (Verbose)
					    printf("H");
					}
				else
					{
					peep(arg, tone, HIGH);

					if  (RateCorrection < 0)
						{
						peep( 990 - arg, tone, OFF);
						TotalCyclesRemoved += 10;

						if  (Debug)
							printf ("\n* Shorter Second: ");
						}
					else
						{
						if	(RateCorrection > 0)
							{
							peep(1010 - arg, tone, OFF);

							TotalCyclesAdded += 10;

							if  (Debug)
								printf ("\n* Longer Second: ");
							}
						else
							{
							peep(1000 - arg, tone, OFF);
							}
						}

					if  (Verbose)
					    printf("M");
					}
				break;

			case DUT1:		/* send DUT1 bits */
				if (dut1 & arg)
					{
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
					}
				else
					{
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
					}
				break;

			case DST1:		/* send DST1 bit */
				ptr--;
				if (DstFlag)
					{
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
					}
				else
					{
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
					}
				break;

			case DST2:		/* send DST2 bit */
				if (DstFlag)
					{
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
					}
				else
					{
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
					}
				break;
			}
		}

	if  (EnableRateCorrection)
		{
		SecondsRunningSimulationTime++;

2054
		clock_gettime(CLOCK_REALTIME, &TimeValue);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
		NowRealTime = TimeValue.tv_sec;

		if  (NowRealTime >= BaseRealTime)		// Just in case system time corrects backwards, do not blow up.
			{
			SecondsRunningRealTime = (unsigned) (NowRealTime - BaseRealTime);
			SecondsRunningDifference = SecondsRunningSimulationTime - SecondsRunningRealTime;

			if  (Debug)
				{
				printf ("> NowRealTime = 0x%8.8X, BaseRealtime = 0x%8.8X, SecondsRunningRealTime = 0x%8.8X, SecondsRunningSimulationTime = 0x%8.8X.\n",
							(unsigned) NowRealTime, (unsigned) BaseRealTime, SecondsRunningRealTime, SecondsRunningSimulationTime);
				printf ("> SecondsRunningDifference = 0x%8.8X, ExpectedRunningDifference = 0x%8.8X.\n",
							SecondsRunningDifference, ExpectedRunningDifference);
				}

			if  (SecondsRunningSimulationTime > RUN_BEFORE_STABILITY_CHECK)
				{
				if  (StabilityCount < MINIMUM_STABILITY_COUNT)
					{
					if  (StabilityCount == 0)
						{
						ExpectedRunningDifference = SecondsRunningDifference;
						StabilityCount++;
						if  (Debug)
							printf ("> Starting stability check.\n");
						}
					else
						{	// Else for "if  (StabilityCount == 0)"
						if  ((ExpectedRunningDifference+INITIAL_STABILITY_BAND > SecondsRunningDifference)
								&& (ExpectedRunningDifference-INITIAL_STABILITY_BAND < SecondsRunningDifference))
							{	// So far, still within stability band, increment count.
							StabilityCount++;
							if  (Debug)
								printf ("> StabilityCount = %d.\n", StabilityCount);
							}
						else
							{	// Outside of stability band, start over.
							StabilityCount = 0;
							if  (Debug)
								printf ("> Out of stability band, start over.\n");
							}
						} // End of else for "if  (StabilityCount == 0)"
					}	// End of true clause for "if  (StabilityCount < MINIMUM_STABILITY_COUNT))"
				else
					{	// Else clause for "if  (StabilityCount < MINIMUM_STABILITY_COUNT))" - OK, so we are supposed to be stable.
					if  (AddCycle)
						{
						if  (ExpectedRunningDifference >= SecondsRunningDifference)
							{
							if  (Debug)
								printf ("> Was adding cycles, ExpectedRunningDifference >= SecondsRunningDifference, can stop it now.\n");

2107 2108
							AddCycle = false;
							RemoveCycle = false;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
							}
						else
							{
							if  (Debug)
								printf ("> Was adding cycles, not done yet.\n");
							}
						}
					else
						{
						if  (RemoveCycle)
							{
							if  (ExpectedRunningDifference <= SecondsRunningDifference)
								{
								if  (Debug)
									printf ("> Was removing cycles, ExpectedRunningDifference <= SecondsRunningDifference, can stop it now.\n");

2125 2126
								AddCycle = false;
								RemoveCycle = false;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
								}
							else
								{
								if  (Debug)
									printf ("> Was removing cycles, not done yet.\n");
								}
							}
						else
							{
							if  ((ExpectedRunningDifference+RUNNING_STABILITY_BAND > SecondsRunningDifference)
									&& (ExpectedRunningDifference-RUNNING_STABILITY_BAND < SecondsRunningDifference))
								{	// All is well, within tolerances.
								if  (Debug)
									printf ("> All is well, within tolerances.\n");
								}
							else
								{	// Oops, outside tolerances.  Else clause of "if  ((ExpectedRunningDifference...SecondsRunningDifference)"
								if  (ExpectedRunningDifference > SecondsRunningDifference)
									{
									if  (Debug)
										printf ("> ExpectedRunningDifference > SecondsRunningDifference, running behind real time.\n");

									// Behind real time, have to add a cycle to slow down and get back in sync.
2150 2151
									AddCycle = false;
									RemoveCycle = true;
2152 2153 2154 2155 2156 2157 2158 2159 2160
									}
								else
									{	// Else clause of "if  (ExpectedRunningDifference < SecondsRunningDifference)"
									if  (ExpectedRunningDifference < SecondsRunningDifference)
										{
										if  (Debug)
											printf ("> ExpectedRunningDifference < SecondsRunningDifference, running ahead of real time.\n");

										// Ahead of real time, have to remove a cycle to speed up and get back in sync.
2161 2162
										AddCycle = true;
										RemoveCycle = false;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
										}
									else
										{
										if  (Debug)
											printf ("> Oops, outside tolerances, but doesn't fit the profiles, how can this be?\n");
										}
									}	// End of else clause of "if  (ExpectedRunningDifference > SecondsRunningDifference)"
								}	// End of else clause of "if  ((ExpectedRunningDifference...SecondsRunningDifference)"
							}	// End of else clause of "if  (RemoveCycle)".
						}	// End of else clause of "if  (AddCycle)".
					}	// End of else clause for "if  (StabilityCount < MINIMUM_STABILITY_COUNT))"
				}	// End of true clause for "if  ((SecondsRunningSimulationTime > RUN_BEFORE_STABILITY_CHECK)"
			}	// End of true clause for "if  (NowRealTime >= BaseRealTime)"
		else
			{
			if  (Debug)
				printf ("> Hmm, time going backwards?\n");
			}
		}	// End of true clause for "if  (EnableRateCorrection)"
		
	fflush (stdout);
	}
	
	
printf ("\n\n>> Completed %d seconds, exiting...\n\n", SecondsToSend);
return (0);
}


/*
 * Generate WWV/H 0 or 1 data pulse.
 */
void WWV_Second(
	int	code,		/* DATA0, DATA1, PI */
	int Rate		/* <0 -> do a short second, 0 -> normal second, >0 -> long second */
	)
{
	/*
	 * The WWV data pulse begins with 5 ms of 1000 Hz follwed by a
	 * guard time of 25 ms. The data pulse is 170, 570 or 770 ms at
	 * 100 Hz corresponding to 0, 1 or position indicator (PI),
	 * respectively. Note the 100-Hz data pulses are transmitted 6
	 * dB below the 1000-Hz sync pulses. Originally the data pulses
	 * were transmited 10 dB below the sync pulses, but the station
	 * engineers increased that to 6 dB because the Heath GC-1000
	 * WWV/H radio clock worked much better.
	 */
	peep(5, tone, HIGH);		/* send seconds tick */
	peep(25, tone, OFF);
	peep(code - 30, 100, LOW);	/* send data */
	
	/* The quiet time is shortened or lengthened to get us back on time */
	if  (Rate < 0)
		{
		peep( 990 - code, 100, OFF);
		
		TotalCyclesRemoved += 10;

		if  (Debug)
			printf ("\n* Shorter Second: ");
		}
	else
		{
		if  (Rate > 0)
			{
			peep(1010 - code, 100, OFF);

			TotalCyclesAdded += 10;

			if  (Debug)
				printf ("\n* Longer Second: ");
			}
		else
			peep(1000 - code, 100, OFF);
		}
}

/*
 * Generate WWV/H 0 or 1 data pulse, with no tick, for 29th and 59th seconds
 */
void WWV_SecondNoTick(
	int	code,		/* DATA0, DATA1, PI */
	int Rate		/* <0 -> do a short second, 0 -> normal second, >0 -> long second */
	)
{
	/*
	 * The WWV data pulse begins with 5 ms of 1000 Hz follwed by a
	 * guard time of 25 ms. The data pulse is 170, 570 or 770 ms at
	 * 100 Hz corresponding to 0, 1 or position indicator (PI),
	 * respectively. Note the 100-Hz data pulses are transmitted 6
	 * dB below the 1000-Hz sync pulses. Originally the data pulses
	 * were transmited 10 dB below the sync pulses, but the station
	 * engineers increased that to 6 dB because the Heath GC-1000
	 * WWV/H radio clock worked much better.
	 */
	peep(30, tone, OFF);		/* send seconds non-tick */
	peep(code - 30, 100, LOW);	/* send data */

	/* The quiet time is shortened or lengthened to get us back on time */
	if  (Rate < 0)
		{
		peep( 990 - code, 100, OFF);

		TotalCyclesRemoved += 10;

		if  (Debug)
			printf ("\n* Shorter Second: ");
		}
	else
		{
		if  (Rate > 0)
			{
			peep(1010 - code, 100, OFF);

			TotalCyclesAdded += 10;

			if  (Debug)
				printf ("\n* Longer Second: ");
			}
		else
			peep(1000 - code, 100, OFF);
		}
}

/*
 * Generate cycles of 100 Hz or any multiple of 100 Hz.
 */
void peep(
	int	pulse,		/* pulse length (ms) */
	int	freq,		/* frequency (Hz) */
	int	amp		/* amplitude */
	)
{
	int	increm;		/* phase increment */
	int	i, j;

	if (amp == OFF || freq == 0)
		increm = 10;
	else
		increm = freq / 100;
	j = 0;
	for (i = 0 ; i < pulse * 8; i++) {
		switch (amp) {

		case HIGH:
			buffer[bufcnt++] = ~c6000[j];
			break;

		case LOW:
			buffer[bufcnt++] = ~c3000[j];
			break;

		default:
			buffer[bufcnt++] = ~0;
		}
		if (bufcnt >= BUFLNG) {
			write(fd, buffer, BUFLNG);
			bufcnt = 0;
		}
		j = (j + increm) % 80;
	}
}


/*
 * Generate unmodulated from similar tables.
 */
void poop(
	int	pulse,		/* pulse length (ms) */
	int	freq,		/* frequency (Hz) */
	int	amp,		/* amplitude */
	int inverted	/* is upside down */
	)
{
	int	increm;		/* phase increment */
	int	i, j;

	if (amp == OFF || freq == 0)
		increm = 10;
	else
		increm = freq / 100;
	j = 0;
	for (i = 0 ; i < pulse * 8; i++) {
		switch (amp) {

		case HIGH:
			if  (inverted)
				buffer[bufcnt++] = ~u3000[j];
			else
				buffer[bufcnt++] = ~u6000[j];
			break;

		case LOW:
			if  (inverted)
				buffer[bufcnt++] = ~u6000[j];
			else
				buffer[bufcnt++] = ~u3000[j];
			break;

		default:
			buffer[bufcnt++] = ~0;
		}
		if (bufcnt >= BUFLNG) {
			write(fd, buffer, BUFLNG);
			bufcnt = 0;
		}
		j = (j + increm) % 80;
	}
}

/*
 * Delay for initial phasing
 */
void delay (
	int	Delay		/* delay in samples */
	)
{
	int	samples;	/* samples remaining */

	samples = Delay;
	memset(buffer, 0, BUFLNG);
	while (samples >= BUFLNG) {
		write(fd, buffer, BUFLNG);
		samples -= BUFLNG;
	}
		write(fd, buffer, samples);
}


/* Calc day of year from year month & day */
/* Year - 0 means 2000, 100 means 2100. */
/* Month - 1 means January, 12 means December. */
/* DayOfMonth - 1 is first day of month */
int
ConvertMonthDayToDayOfYear (int YearValue, int MonthValue, int DayOfMonthValue)
	{
	int	ReturnValue;
	int	LeapYear;
	int	MonthCounter;

	/* Array of days in a month.  Note that here January is zero. */
	/* NB: have to add 1 to days in February in a leap year! */
	int DaysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};


2408
	LeapYear = false;
2409 2410 2411 2412 2413 2414
	if  ((YearValue % 4) == 0)
		{
		if  ((YearValue % 100) == 0)
			{
			if  ((YearValue % 400) == 0)
				{
2415
				LeapYear = true;
2416 2417 2418 2419
				}
			}
		else
			{
2420
			LeapYear = true;
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
			}
		}

	if  (Debug)
		printf ("\nConvertMonthDayToDayOfYear(): Year %d %s a leap year.\n", YearValue+2000, LeapYear ? "is" : "is not");

	/* Day of month given us starts in this algorithm. */
	ReturnValue = DayOfMonthValue;

	/* Add in days in month for each month past January. */
	for (MonthCounter=1; MonthCounter<MonthValue; MonthCounter++)
		{
		ReturnValue += DaysInMonth [ MonthCounter - 1 ];
		}

	/* Add a day for leap years where we are past February. */
	if  ((LeapYear) && (MonthValue > 2))
		{
		ReturnValue++;
		}

	if  (Debug)
		printf ("\nConvertMonthDayToDayOfYear(): %4.4d-%2.2d-%2.2d represents day %3d of year.\n",
				YearValue+2000, MonthValue, DayOfMonthValue, ReturnValue);

	return (ReturnValue);
	}


void
Help ( void )
	{
	printf ("\n\nTime Code Generation - IRIG-B or WWV, v%d.%d, %s dmw", VERSION, ISSUE, ISSUE_DATE);
	printf ("\n\nRCS Info:");
	printf (  "\n  $Header: /home/dmw/src/IRIG_generation/ntp-4.2.2p3/util/RCS/tg.c,v 1.28 2007/02/12 23:57:45 dmw Exp $");
	printf ("\n\nUsage: %s [option]*", CommandName);
	printf ("\n\nOptions: -a device_name                 Output audio device name (default /dev/audio)");
	printf (  "\n         -b yymmddhhmm                  Remove leap second at end of minute specified");
	printf (  "\n         -c seconds_to_send             Number of seconds to send (default 0 = forever)");
	printf (  "\n         -d                             Start with IEEE 1344 DST active");
	printf (  "\n         -f format_type                 i = Modulated IRIG-B 1998 (no year coded)");
	printf (  "\n                                        2 = Modulated IRIG-B 2002 (year coded)");
	printf (  "\n                                        3 = Modulated IRIG-B w/IEEE 1344 (year & control funcs) (default)");
	printf (  "\n                                        4 = Unmodulated IRIG-B w/IEEE 1344 (year & control funcs)");
	printf (  "\n                                        5 = Inverted unmodulated IRIG-B w/IEEE 1344 (year & control funcs)");
	printf (  "\n                                        w = WWV(H)");
	printf (  "\n         -g yymmddhhmm                  Switch into/out of DST at beginning of minute specified");
	printf (  "\n         -i yymmddhhmm                  Insert leap second at end of minute specified");
	printf (  "\n         -j                             Disable time rate correction against system clock (default enabled)");
	printf (  "\n         -k nn                          Force rate correction for testing (+1 = add cycle, -1 = remove cycle)");
	printf (  "\n         -l time_offset                 Set offset of time sent to UTC as per computer, +/- float hours");
	printf (  "\n         -o time_offset                 Set IEEE 1344 time offset, +/-, to 0.5 hour (default 0)");
	printf (  "\n         -q quality_code_hex            Set IEEE 1344 quality code (default 0)");
	printf (  "\n         -r sample_rate                 Audio sample rate (default 8000)");
	printf (  "\n         -s                             Set leap warning bit (WWV[H] only)");
	printf (  "\n         -t sync_frequency              WWV(H) on-time pulse tone frequency (default 1200)");
	printf (  "\n         -u DUT1_offset                 Set WWV(H) DUT1 offset -7 to +7 (default 0)");
#ifndef  HAVE_SYS_SOUNDCARD_H
	printf (  "\n         -v initial_output_level        Set initial output level (default %d, must be 0 to 255)", AUDIO_MAX_GAIN/8);
#endif
	printf (  "\n         -x                             Turn off verbose output (default on)");
	printf (  "\n         -y yymmddhhmmss                Set initial date and time as specified (default system time)");
	printf ("\n\nThis software licenced under the GPL, modifications performed 2006 & 2007 by Dean Weiten");
	printf (  "\nContact: Dean Weiten, Norscan Instruments Ltd., Winnipeg, MB, Canada, ph (204)-233-9138, E-mail dmw@norscan.com");
	printf ("\n\n");
	}

/* Reverse string order for nicer print. */
void
ReverseString(char *str)
	{
	int		StringLength;
	int		IndexCounter;
	int		CentreOfString;
	char	TemporaryCharacter;


	StringLength	= strlen(str);
	CentreOfString	= (StringLength/2)+1;
	for (IndexCounter = StringLength; IndexCounter >= CentreOfString; IndexCounter--)
		{
		TemporaryCharacter				= str[IndexCounter-1];
		str[IndexCounter-1]				= str[StringLength-IndexCounter];
		str[StringLength-IndexCounter]	= TemporaryCharacter;
		}
	}