Nodal Scene Interface

A flexible, modern API for renderers

Authors

Olivier Paquet, Aghiles Kheffache, Francois Colbert, Berj Bannayan

July 13, 2018

© 2015-2018 The 3Delight Team. All rights reserved.

Contents

Contents ii
1 Background 4
2 The Interface 6
2.1 The interface abstraction oL, 6
2.2 The CAPI e 6
2.2.1 Context handling L 7

2.2.2 Passing optional parameters 8

223 Nodecreation L 9

2.2.4 Setting attributes Lo 10

2.2.5 Making connections Lo L Lo 11

2.2.6 Evaluating procedurals. 12

2.27 Error reporting Lo L o 13

2.2.8 Rendering 14

2.3 TheLua APT 15
2.3.1 APIcalls 16

2.3.2 Function parameters format 16

2.3.3 Evaluating a Lua script 18

2.3.4 Passing parameters to a Lua script L. 18

2.3.5 Reporting errors from a Lua script 19

24 The C++4 API wrappers« .o v v i vt it 19
2.5 The interface stream 19

3 Nodes 21
3.1 Therootnode. e 22
3.2 Theglobalnode. 22
3.3 Thesetnode 25
34 Themeshnode 25
3.5 Thefaceset nodeo 26
3.6 The cubiccurvesnode Lo oo 26
3.7 The linearcurves node e 27

ii

CONTENTS iii

3.8 The particlesnode 28
3.9 The proceduralnode 29
3.10 The environment node 29
3.11 The shadernode 29
3.12 The attributes node o 30
3.13 The transformnode oL o 31
3.14 The outputdriver node 31
3.15 The outputlayer node 32
3.16 The screennode 34
3.17 Camera Nodes L 35
3.17.1 The orthographiccameranode 36

3.17.2 The perspectivecamera node 36

3.17.3 The fisheyecameranode 37

3.17.4 The cylindricalcamera node 37

3.17.5 The sphericalcameranode 37

3.17.6 Lensshaders 37

4 Script Objects 39
5 Rendering Guidelines 40
5.1 Basicscene anatomy Lo 40
5.2 A word — or two — about attributes 41
5.3 Imstancing L L 42
5.4 Creating osl networks oL oL o 43
5.5 Lighting in the nodal scene interface 44
55.1 Arealights 45

5.5.2 Spot and point lights L. 45

5.5.3 Directional and HDR lights 46

5.6 Defining output drivers and layers 47
5.7 Light layers 48
5.8 Imter-object visibilityo oo 49
List of Figures 52
List of Tables 52

Index 54

Chapter 1

Background

The Nodal Scene Interface (NsI) was developed to replace existing APIs in our renderer
which are showing their age. Having been designed in the 80s and extended several
times since, they include features which are no longer relevant and design decisions
which do not reflect modern needs. This makes some features more complex to use
than they should be and prevents or greatly increases the complexity of implementing
other features.

The design of the NSI was shaped by multiple goals:

Simplicity The interface itself should be simple to understand and use, even if com-
plex things can be done with it. This simplicity is carried into everything which
derives from the interface.

Interactive rendering and scene edits Scene edit operations should not be a spe-
cial case. There should be no difference between scene description and scene
edits. In other words, a scene description is a series of edits and vice versa.

Tight integration with Open Shading Language OSL integration is not superfi-
cial and affects scene definition. For example, there are no explicit light sources in
NSI: light sources are created by connected shaders with an emission() closure
to a geometry.

Scripting The interface should be accessible from a platform independent, efficient
and easily accessible scripting language. Scripts can be used to add render time
intelligence to a given scene description.

Performance and multi-threading All API design decisions are made with perfor-
mance in mind and this includes the possibility to run all API calls in a concur-
rent, multi-threaded environment. Nearly all software today which deals with
large data sets needs to use multiple threads at some point. It is important for
the interface to support this directly so it does not become a single thread com-
munication bottleneck. This is why commands are self-contained and do not rely

4

CHAPTER 1. BACKGROUND 5

on a current state. Everything which is needed to perform an action is passed in
on every call.

Support for serialization The interface calls should be serializable. This implies a
mostly unidirectional dataflow from the client application to the renderer and
allows greater implementation flexibility.

Extensibility The interface should have as few assumptions as possible built-in about
which features the renderer supports. It should also be abstract enough that new
features can be added without looking out of place.

Chapter 2

The Interface

2.1 The interface abstraction

The Nodal Scene Interface is built around the concept of nodes. Each node has a
unique handle to identify it and a type which describes its intended function in the
scene. Nodes are abstract containers for data for which the interpretation depends on
the node type. Nodes can also be connected to each other to express relationships.

Data is stored on nodes as attributes. Each attribute has a name which is unique on
the node and a type which describes the kind of data it holds (strings, integer numbers,
floating point numbers, etc).

Relationships and data flow between nodes are represented as connections. Connec-
tions have a source and a destination. Both can be either a node or a specific attribute
of a node. There are no type restrictions for connections in the interface itself. It is
acceptable to connect attributes of different types or even attributes to nodes. The
validity of such connections depends on the types of the nodes involved.

What we refer to as the NSI has two major components:

e« Methods to create nodes, attributes and their connections.
¢ Node types understood by the renderer. These are described in chapter 3.

Much of the complexity and expressiveness of the interface comes from the sup-
ported nodes. The first part was kept deliberately simple to make it easy to support
multiple ways of creating nodes. We will list a few of those in the following sections
but this list is not meant to be final. New languages and file formats will undoubtedly
be supported in the future.

2.2 The C API

This section will describe in detail the ¢ implementation of the NsI, as provided in
the nsi.h file. This will also be a reference for the interface in other languages as all

CHAPTER 2. THE INTERFACE 7

concepts are the same.
#define NSI_VERSION 1

The NSI_VERSION macro exists in case there is a need at some point to break source
compatibility of the C interface.

#define NSI_SCENE_ROOT ".root"
The NSI_SCENE_ROOT macro defines the handle of the root node.
#define NSI_ALL_NODES ".all"

The NSI_ALL_NODES macro defines a special handle to refer to all nodes in some con-
texts, such as the removing connections.

2.2.1 Context handling

NSIContext_t NSIBegin(
int nparams,
const NSIParam_t *params) ;

void NSIEnd(NSIContext_t ctx);

These two functions control creation and destruction of a NSI context, identified by
a handle of type NSIContext_t. A context must be given explicitly when calling all
other functions of the interface. Contexts may be used in multiple threads at once.
The NSIContext_t is a convenience typedef and is defined as such:

typedef int NSIContext_t;
If NSIBegin fails for some reason, it returns NSI_BAD_CONTEXT which is defined in nsi.h:
#define NSI_BAD_CONTEXT ((NSIContext_t)O0)

Optional parameters may be given to NSIBegin () to control the creation of the context:
type string (render)
Sets the type of context to create. The possible types are:

render — To execute the calls directly in the renderer.

apistream — To write the interface calls to a stream, for later execution. The
target for writing the stream must be specified in another parameter.

streamfilename string
The file to which the stream is to be output, if the context type is apistream.
Specify "stdout" to write to standard output and "stderr" to write to standard
€ITOr.

streamformat string
The format of the command stream to write. Possible formats are:

CHAPTER 2. THE INTERFACE 8

nsi — Produces a NSI stream.
binarynsi — Produces a binary encoded NSI stream.
lua — Produces Lua API calls (refer to section 2.3).

streamcompression string
The type of compression to apply to the written command stream.

errorhandler pointer
A function which is to be called by the renderer to report errors. The default
handler will print messages to the console.

errorhandlerdata pointer
The userdata parameter of the error reporting function.

2.2.2 Passing optional parameters

struct NSIParam_t

{
const char *name;
const void *data;
int type;
int arraylength;
size_t count;
int flags;

};

This structure is used to pass variable parameter lists through the C interface. Most
functions accept an array of the structure in a params parameter along with its length
in a nparams parameter. The meaning of these two parameters will not be documented
for every function. Instead, they will document the parameters which can be given in
the array.

The name member is a C string which gives the parameter’s name. The type
member identifies the parameter’s type, using one of the following constants:

e NSITypeFloat for a single 32-bit floating point value.

e NSITypeDouble for a single 64-bit floating point value.

e NSITypeInteger for a single 32-bit integer value.

e NSITypeString for a string value, given as a pointer to a C string.

e NSITypeColor for a color, given as three 32-bit floating point values.

e NSITypePoint for a point, given as three 32-bit floating point values.

e NSITypeVector for a vector, given as three 32-bit floating point values.

e NSITypeNormal for a normal vector, given as three 32-bit floating point values.

CHAPTER 2. THE INTERFACE 9

e NSITypeMatrix for a transformation matrix, given as 16 32-bit floating point
values.

e NSITypeDoubleMatrix for a transformation matrix, given as 16 64-bit floating
point values.

e NSITypePointer for a C pointer.

Array types are specified by setting the bit defined by the NSIParamIsArray constant
in the flags member and the length of the array in the arraylength member. The
count member gives the number of data items given as the value of the parameter.
The data member is a pointer to the data for the parameter. The flags member is a
bit field with a number of constants defined to communicate more information about
the parameter:

e NSIParamIsArray to specify that the parameter is an array type, as explained
previously.

e NSIParamPerFace to specify that the parameter has different values for every
face of a geometric primitive, where this might be ambiguous.

e NSIParamPerVertex to specify that the parameter has different values for every
vertex of a geometric primitive, where this might be ambiguous.

e NSIParamInterpolateLinear to specify that the parameter is to be interpolated
linearly instead of using some other default method.

Indirect lookup of parameters is achieved by giving an integer parameter of the same

name, with the .indices suffix added. This is read to know which values of the other
parameter to use.

2.2.3 Node creation

void NSICreate(
NSIContext_t context,
NSIHandle_t handle,
const char *type,
int nparams,
const NSIParam_t *params) ;

This function is used to create a new node. Its parameters are:
context
The context returned by NSIBegin. See subsection 2.2.1

handle
A node handle. This string will uniquely identify the node in the scene.
If the supplied handle matches an existing node, the function does nothing if all
other parameters match the call which created that node. Otherwise, it emits an
error. Note that handles need only be unique within a given interface context. It

CHAPTER 2. THE INTERFACE 10

is acceptable to reuse the same handle inside different contexts. The NSIHandle_t
typedef is defined in nsi.h:

typedef const char * NSIHandle_t;

type
The type of node to create. See chapter 3.

nparams, params
This pair describes a list of optional parameters. There are no optional parame-
ters defined as of now. The NSIParam_t type is described in subsection 2.2.2.

void NSIDelete(
NSIContext_t ctx,
NSIHandle_t handle,
int nparams,
const NSIParam_t *params) ;

This function deletes a node from the scene. All connections to and from the node
are also deleted. Note that it is not possible to delete the root or the global node. Its
parameters are:

context
The context returned by NSIBegin. See subsection 2.2.1

handle
A node handle. It identifies the node to be deleted.

It accepts the following optional parameters:

recursive int (0)
Specifies whether deletion is recursive. By default, only the specified node is
deleted. If a value of 1 is given, then nodes which connect to the specified
node are recursively removed, unless they also have connections which do not
eventually lead to the specified node. This allows, for example, deletion of an
entire shader network in a single call.

2.2.4 Setting attributes

void NSISetAttribute(
NSIContext_t ctx,
NSIHandle_t object,
int nparams,
const NSIParam_t *params);

CHAPTER 2. THE INTERFACE 11

This functions sets attributes on a previously created node. All optional parameters of
the function become attributes of the node. On a shader node, this function is used to
set the implicitly defined shader parameters. Setting an attribute using this function
replaces any value previously set by NSISetAttribute or NSISetAttributeAtTime.
To reset an attribute to its default value, use NSIDeleteAttribute.

void NSISetAttributeAtTime (
NSIContext_t ctx,
NSIHandle_t object,
float time,
int nparams,
const NSIParam_t *params) ;

This function sets time-varying attributes (i.e. motion blurred). The time parameter
specifies at which time the attribute is being defined. It is not required to set time-
varying attributes in any particular order. In most uses, attributes that are motion
blurred must have the same specification throughout the time range. A notable ex-
ception is the P attribute on particles which can be of different size for each time step
because of appearing or disappearing particles. Setting an attribute using this function
replaces any value previously set by NSISetAttribute.

void NSIDeleteAttribute(
NSIContext_t ctx,
NSIHandle_t object,
const char *name);

This function deletes any attribute with a name which matches the name parameter
on the specified object. There is no way to delete an attribute only for a specific time
value.

Deleting an attribute resets it to its default value. For example, after deleting
the transformationmatrix attribute on a transform node, the transform will be an
identity. Deleting a previously set attribute on a shader node will default to whatever
is declared inside the shader.

2.2.5 Making connections

void NSIConnect(
NSIContext_t ctx,
NSIHandle_t from,
const char *from_attr,
NSIHandle_t to,

CHAPTER 2. THE INTERFACE 12

const char *to_attr,
int nparams,
const NSIParam_t *params) ;

void NSIDisconnect(
NSIContext_t ctx,
NSIHandle_t from,
const char *xfrom_attr,
NSIHandle_t to,
const char *to_attr);

These two functions respectively create or remove a connection between two elements.
It is not an error to create a connection which already exists or to remove a connection
which does not exist but the nodes on which the connection is performed must exist.
The parameters are:
from

The handle of the node from which the connection is made.

from_attr
The name of the attribute from which the connection is made. If this is an
empty string then the connection is made from the node instead of from a specific
attribute of the node.

to The handle of the node to which the connection is made.

to_attr
The name of the attribute to which the connection is made. If this is an empty
string then the connection is made to the node instead of to a specific attribute
of the node.

NSIConnect accepts additional optional parameters. Refer to section 5.8 for more
about their utility.

With NSIDisconnect, the handle for either node may be the special value ".all".
This will remove all connections which match the other three parameters. For example,
to disconnect everything from the scene root:

NSIDisconnect(NSI_ALL_NODES, "", NSI_SCENE_ROOT, "objects");

2.2.6 Evaluating procedurals

void NSIEvaluate(
NSIContext_t ctx,
int nparams,
const NSIParam_t *params) ;

CHAPTER 2. THE INTERFACE 13

This function includes a block of interface calls from an external source into the current
scene. It blends together the concepts of a straight file include, commonly known as an
archive, with that of procedural include which is traditionally a compiled executable.
Both are really the same idea expressed in a different language (note that for delayed
procedural evaluation one should use the procedural node).

The NsI adds a third option which sits in-between—Lua scripts (section 2.3). They
are much more powerful than a simple included file yet they are also much easier to
generate as they do not require compilation. It is, for example, very realistic to export
a whole new script for every frame of an animation. It could also be done for every
character in a frame. This gives great flexibility in how components of a scene are put
together.

The optional parameters accepted by this function are:
filename string

The name of the file which contains the interface calls to include.

type string
The type of file which will generate the interface calls. This can be one of:
apistream — To read in a NSI stream.

lua — To execute a Lua script, either from file or inline. See section 2.3 and
more specifically subsection 2.3.3.

dynamiclibrary — To execute native compiled code in a loadable library.

script string
A valid Lua script to execute when type is set to "lua".

parameters string
Optional procedural parameters.

backgroundload int (0)
If this is nonzero, the object may be loaded in a separate thread, at some later
time. This requires that further interface calls not directly reference objects
defined in the included file. The only guarantee is that the file will be loaded
before rendering begins.

2.2.7 Error reporting

enum NSIErrorLevel

{
NSIErrMessage = O,
NSIErrInfo = 1,
NSIErrWarning = 2,
NSIErrError = 3

CHAPTER 2. THE INTERFACE 14

typedef void (*NSIErrorHandler_t) (
void *userdata, int level, int code, const char *message)

This defines the type of the error handler callback given to the NSIBegin func-
tion. When it is called, the level parameter is one of the values defined by the
NSIErrorLevel enum. The code parameter is a numeric identifier for the error
message, or 0 when irrelevant. The message parameter is the text of the message.
The text of the message will not contain the numeric identifier nor any reference
to the error level. It is usually desirable for the error handler to present these values
together with the message. The identifier exists to provide easy filtering of messages.
The intended meaning of the error levels is as follows:
e NSIErrMessage for general messages, such as may be produced by printf in
shaders. The default error handler will print this type of messages without an
EOL terminator as it’s the duty of the caller to format the message.

e NSIErrInfo for messages which give specific information. These might simply
inform about the state of the renderer, files being read, settings being used and
SO on.

e NSIErrWarning for messages warning about potential problems. These will gen-
erally not prevent producing images and may not require any corrective action.
They can be seen as suggestions of what to look into if the output is broken but
no actual error is produced.

e NSIErrError for error messages. These are for problems which will usually break
the output and need to be fixed.

2.2.8 Rendering

void NSIRenderControl(
NSIContext_t ctx,
int nparams,
const NSIParam_t *params) ;

This function is the only control function of the API. It is responsible of starting,

suspending and stopping the render. It also allows for synchronizing the render with

interactive calls that might have been issued. The function accepts optional parame-

ters:

action string
Specifies the operation to be performed, which should be one of the following:

start — This starts rendering the scene in the provided context. The render
starts in parallel and the control flow is not blocked.

wait — Wait for a render to finish.

CHAPTER 2. THE INTERFACE 15

synchronize — For an interactive render, apply all the buffered calls to scene’s
state.

suspend — Suspends render in the provided context.
resume — Resumes a previously suspended render.
stop — Stops rendering in the provided context without destroying the scene

progressive int (0)
If set to 1, render the image in a progressive fashion.

interactive int (0)
If set to 1, the renderer will accept commands to edit scene’s state while rendering.
The difference with a normal render is that the render task will not exit even if
rendering is finished. Interactive renders are by definition progressive.

frame int
Specifies the frame number of this render.

stoppedcallback pointer
A pointer to a user function that should be called once rendering has stopped,
either because a non-interactive render is complete, or because the stop action
has been triggered. This function must have no return value and accept a pointer
argument, a NSI context argument and an integer argument :

void StoppedCallback(
void* stoppedcallbackdata,
NSIContext_t ctx,
int status);

The third parameter is an integer that indicates why rendering has stopped and
is one of the following values:

o NSIRenderCompleted indicates that rendering has completed normally.

e NSIRenderAborted indicates that rendering was interrupted before comple-

tion.

stoppedcallbackdata pointer
A pointer that will be passed back to the stoppedcallback function.

2.3 The Lua API

The scripted interface is slightly different than its C counterpart since it has been
adapted to take advantage of the niceties of Lua. The main differences with the C API
are:

CHAPTER 2. THE INTERFACE 16

nsi.Create("lambert", "shader");
nsi.SetAttribute(
"lambert",
{name="filename", data="lambert_material.oso"},
{name="Kd", data=.55},
{name="albedo", data={1, 0.5, 0.3}, type=nsi.TypeColor});

nsi.Create("ggx", "shader");
nsi.SetAttribute(
"ggX",
{
{name="filename", data="ggx_material.oso"},
{name="anisotropy_direction", data={0.13, 0 ,1}, type=nsi.TypeVector}
}

Listing 2.1: Shader creation example in Lua

e No need to pass a NSI context to function calls since it’s already embodied in the
NsI Lua table (which is used as a class).

e The type parameter specified can be omitted if the parameter is an integer, real
or string (as with the Kd and filename in the example below).

e NSI parameters can either be passed as a variable number of arguments or as
a single argument representing an array of parameters (as in the "ggx" shader
below)

o There is no need to call NSIBegin and NSIEnd equivalents since the Lua script is
run in a valid context.

Listing 2.1 shows an example shader creation logic in Lua.

2.3.1 API calls

All useful (in a scripting context) NSI functions are provided and are listed in Table 2.1.
There is also a nsi.utilities class which, for now, only contains a method to print
errors. See subsection 2.3.5.

2.3.2 Function parameters format
Each single parameter is passed as a Lua table containing the following key values:
e name - contains the name of the parameter.

« data - The actual parameter data. Either a value (integer, float or string) or an
array.

CHAPTER 2. THE INTERFACE

17

Lua Function

C equivalent

nsi.SetAttribute
nsi.SetAttributeAtTime
nsi.Create

nsi.Delete
nsi.DeleteAttribute
nsi.Connect
nsi.Disconnect

Evaluate

NSISet Attribute
NSISetAttributeAtTime
NSICreate

NSIDelete
NSIDeleteAttribute
NSIConnect
NSIDisconnect
NSIEvaluate

Table 2.1: NsI functions

o type - specifies the type of the parameter. Possible values are shown in Table 2.2.

Lua Type

C equivalent

nsi. TypeFloat
nsi. Typelnteger
nsi. TypeString
nsi. TypeNormal
nsi. TypeVector
nsi. TypePoint
nsi. TypeMatrix

NSITypeFloat
NSITypelnteger
NSITypeString
NSITypeNormal
NSITypeVector
NSITypePoint
NSITypeMatrix

Table 2.2: NSI types

o arraylength - specifies the length of the array for each element.

NOTE — There is no count parameter in Lua since it can be obtained
from the size of the provided data, its type and array length.

Here are some example of well formed parameters:

--[[strings, floats and integers do not need a ’type’ specifier 1] --

pl = {name="shaderfilename", data="emitter"};

{name="power", data=10.13};
{name="toggle", data=1};

p2
p3

--[[All other types, including colors and points, need a

type specified for disambiguation.]]--

p4 = {name="Cs", data={1, 0.9, 0.7}, type=nsi.TypeColorl};

--[[An array of 2 colors]] --

CHAPTER 2. THE INTERFACE 18

p5 = {name="vertex_color", arraylength=2,
data={1, 1, 1, 0, 0, 0}, type=nsi.TypeColor};

--[[Create a simple mesh and connect it root]] --
nsi.Create("floor", "mesh")
nsi.SetAttribute("floor",
{name="nvertices", data=4},
{name="P", type=nsi.TypePoint,
data={-2, -1, -1, 2, -1, -1, 2, 0, -3, -2, 0, -3}})
nsi.Connect("floor", "", ".root", "objects")

2.3.3 Evaluating a Lua script

Script evaluation is started using NSIEvaluate in C, NSI stream or even another Lua
script. Here is an example using NSI stream:

Evaluate
"filename" "string" 1 ["test.nsi.lua"]
"type" "string" 1 ["1ua"]

It is also possible to evaluate a Lua script inline using the script parameter. For
example:

Evaluate
"script" "string" 1 ["msi.Create(\"light\", \"shader\");"]
"type" "string" 1 [nluau]

Both “filename” and “script” can be specified to NSIEvaluate in one go, in which case
the inline script will be evaluated before the file and both scripts will share the same
NsI and Lua contexts. Any error during script parsing or evaluation will be sent to NsI’s
error handler. Note that all Lua scripts are run in a sandbox in which all Lua system
libraries are disabled. Some utilities, such as error reporting, are available through the
nsi.utilities class.

2.3.4 Passing parameters to a Lua script

All parameters passed to NSIEvaluate will appear in the nsi.scriptparameters ta-
ble. For example, the following call:

Evaluate
"filename" "string" 1 ["test.lua"]
lltype n n String" 1 [ll luall]
"userdata" "color[2]" 1 [1 0 1 2 3 4]

CHAPTER 2. THE INTERFACE 19
Will register a userdata entry in the nsi.scriptparameters table. So executing the
following line in test.lua:

print(nsi.scriptparameters.userdata.datal[5]);

Will print 3.0.

2.3.5 Reporting errors from a Lua script

Use nsi.utilities.ReportError to send error messages to the error handler defined
in the current NSI context. For example:

nsi.utilities.ReportError(nsi.ErrWarning, "Watch out!");

The error codes are the same as in the C API and are shown in Table 2.3.

Lua Error Codes C equivalent

nsi.ErrMessage NSIErrMessage
nsi.ErrWarning NSIErrMessage
nsi.ErrInfo NSIErrInfo
nsi.ErrError NSIErrError

Table 2.3: NSI error codes

2.4 The C++ API wrappers

The nsi.hpp file provides C++ wrappers which are less tedious to use than the low
level C interface. All the functionality is inline so no additional libraries are needed
and there are no ABI issues to consider.

To be continued ...

2.5 The interface stream

It is important for a scene description API to be streamable. This allows saving scene
description into files, communicating scene state between processes and provide extra
flexibility when sending commands to the renderer!.

Instead of re-inventing the wheel, the authors have decided to use exactly the same
format as is used by the RenderMan Interface Bytestream (RIB). This has several
advantages:

IThe streamable nature of the RenderMan API, through RIB, is an undeniable advantage.
RenderMan® is a registered trademark of Pixar.

CHAPTER 2. THE INTERFACE 20

o Well defined Ascil and binary formats.
e The Ascil format is human readable and easy to understand.
o Easy to integrate into existing renderers (writers and readers already available).

Note that since Lua is part of the API, one can use Lua files for API streaming?.

2Preliminary tests show that the Lua parser is as fast as an optimized ASCII RIB parser.

Chapter 3

Nodes

The following sections describe available nodes in technical terms. Refer to chapter 5
for usage details.

Node Function Reference
root Scene’s root section 3.1
global Global settings node section 3.2
set To express relationships to groups of nodes section 3.3
shader OSL shader or layer in a shader group section 3.11
attributes Container for generic attributes (e.g. visibility) section 3.12
transform Transformation to place objects in the scene section 3.13
mesh Polygonal mesh or subdivision surface section 3.4
faceset Assign attributes to part of a mesh section 3.5
cubiccurves B-spline and Catmull-Rom curves section 3.6
linearcurves Linearly interpolated curves section 3.7
particles Collection of particles section 3.8
procedural Geometry to be loaded in delayed fashion section 3.9
environment Geometry type to define environment lighting section 3.10
*camera Set of nodes to create viewing cameras section 3.17
outputdriver Location where to output rendered pixels section 3.14
outputlayer Describes one render layer to be connected to an section 3.15
outputdriver node
screen Describes how the view from a camera will be ras- section 3.16

terized into an outputlayer node

Table 3.1: NSI nodes overview

21

CHAPTER 3. NODES 22

3.1 The root node

The root node is much like a transform node with the particularity that it is the end
connection for all renderable scene elements (see section 5.1). A node can exist in
an NSI context without being connected to the root note but in that case it won’t
affect the render in any way. The root node has the reserved handle name .root and
doesn’t need to be created using NSICreate. The root node has two defined attributes:
objects and geometryattributes. Both are explained in section 3.13.

3.2 The global node

This node contains various global settings for a particular NsI context. Note that these
attributes are for the most case implementation specific. This node has the reserved
handle name .global and doesn’t need to be created using NSICreate. The following
attributes are recognized by 3Delight:

numberofthreads int (0)
Specifies the total number of threads to use for a particular render:

e A value of zero lets the render engine choose an optimal thread value. This
is the default behaviour.

o Any positive value directly sets the total number of render threads.

e A negative value will start as many threads as optimal plus the specified
value. This allows for an easy way to decrease the total number of render
threads.

texturememory int (1000)
Specifies the approximate memory size, in megabytes, the renderer will allocate
to accelerate texture access.

texturedirectory string
Sepcifies the directory where preprocessed textures will be stored.

networkcache.size int (15)
Specifies the maximum network cache size, in gigabytes, the renderer will use to
cache textures on a local drive to accelerate data access.

networkcache.directory string
Specifies the directory in which textures will be cached. A good default value is
/var/tmp/3DelightCache on Linux systems.

license.server string
Specifies the name or address of the license server to be used.

CHAPTER 3. NODES 23

license.wait int (1)
When no license is available for rendering, the renderer will wait until a license
is available if this attribute is set to 1, but will stop immediately if it’s set to 0.
The latter setting is useful when managing a renderfarm and other work could
be scheduled instead.

license.hold int (0)
By default, the renderer will get new licenses for every render and release them
once it’s done. This can be undesirable if several frames are rendered in sequence
from the same process. If this option is set to 1, the licenses obtained for the
first frame are held until the last frame is finished.

renderatlowpriority int (0)
If set to 1, start the render with a lower process priority. This can be useful if
there are other applications that must run during rendering.

bucketorder string (horizontal)
Specifies in what order the buckets are rendered. The available values are:
horizontal — row by row, left to right and top to bottom.
vertical — column by column, top to bottom and left to right.
zigzag — row by row, left to right on even rows and right to left on odd rows.
spiral — in a clockwise spiral from the centre of the image.
circle — in concentric circles from the centre of the image.

maximumraydepth.diffuse int (1)
Specifies the maximum bounce depth a diffuse ray can reach. A depth of 1
specifies one additional bounce compared to purely local illumination.

maximumraydepth.hair int (4)

Specifies the maximum bounce depth a hair ray can reach. Note that hair are
akin to volumetric primitives and might need elevated ray depth to properly
capture the illumination.

maximumraydepth.reflection int (1)
Specifies the maximum bounce depth a reflection ray can reach. Setting the
reflection depth to 0 will only compute local illumination meaning that only
emissive surfaces will appear in the reflections.

maximumraydepth.refraction int (4)
Specifies the maximum bounce depth a refraction ray can reach. A value of 4
allows light to shine through a properly modeled object such as a glass.

maximumraydepth.volume int (0)
Specifies the maximum bounce depth a volume ray can reach.

CHAPTER 3. NODES 24

maximumraylength.diffuse double (-1)
Limits the distance a ray emitted from a diffuse material can travel. Using a
relatively low value for this attribute might improve performance without sig-
nificantly affecting the look of the resulting image, as it restrains the extent of
global illumination. Setting it to a negative value disables the limitation.

maximumraylength.hair double (-1)
Limits the distance a ray emitted from a hair closure can travel. Setting it to a
negative value disables the limitation.

maximumraylength.reflection double (-1)
Limits the distance a ray emitted from a reflective material can travel. Setting
it to a negative value disables the limitation.

maximumraylength.refraction double (-1)
Limits the distance a ray emitted from a refractive material can travel. Setting
it to a negative value disables the limitation.

maximumraylength.specular double (-1)
Limits the distance a ray emitted from a specular (glossy) material can travel.
Setting it to a negative value disables the limitation.

maximumraylength.volume double (-1)
Limits the distance a ray emitted from a volume can travel. Setting it to a
negative value disables the limitation.

quality.shadingsamples int (1)
Controls the quality of BSDF sampling. Larger values give less visible noise.

quality.volumesamples int (1)
Controls the quality of volume sampling. Larger values give less visible noise.

show.displacement int (1)
When set to 1, enables displacement shading. Otherwise, it must be set to O,
which forces the renderer to ignore any displacement shader in the scene.

show.osl.subsurface int (1)
When set to 1, enables the subsurface() OSL closure. Otherwise, it must be set
to 0, which will ignore this closure in OSL shaders.

statistics.progress int (0)
When set to 1, prints rendering progress as a percentage of completed pixels.

statistics.filename string (null)
Full path of the file where rendering statistics will be written. An empty string
will write statistics to standard output. The name null will not output statistics.

CHAPTER 3. NODES 25

3.3 The set node

This node can be used to express relationships between objects. An example is to
connect many lights to such a node to create a light set and then to connect this
node to outputlayer.lightset (section 3.15 and section 5.7). It has the following
attributes:

objects <connection>
This connection accepts all nodes that are members of the set.

3.4 The mesh node

This node represents a polygon mesh. It has the following required attributes:

P point
The positions of the object’s vertices. Typically, this attribute will be addressed
indirectly through a P.indices attribute.

nvertices int
The number of vertices for each face of the mesh. The number of values for this
attribute specifies total face number (unless nholes is defined).

It also has optional attributes:

nholes int
The number of holes in the polygons. When this attribute is defined, the to-
tal number of faces in the mesh is defined by the number of values for nholes
rather than for nvertices. For each face, there should be (nholes+1) values in
nvertices: the respective first value specifies the number of vertices on the out-
side perimeter of the face, while additional values describe the number of vertices
on perimeters of holes in the face. Listing 3.1 shows the definition of a polygon
mesh consisting of 3 square faces, with one triangular hole in the first one and
square holes in the second one.

clockwisewinding int (0)
A value of 1 specifies that polygons with a clockwise winding order are front
facing. The default is 0, making counterclockwise polygons front facing.

subdivision.scheme string
A value of "catmull-clark" will cause the mesh to render as a Catmull-Clark
subdivision surface.

subdivision.cornervertices int
This attribute is a list of vertices which are sharp corners. The values are indices
into the P attribute, like P.indices.

CHAPTER 3. NODES 26

Create "holey" "mesh"

SetAttribute "holey"
"nholes" "int" 3 [1 2 0]
"nvertices" "int" 6 [

43 # Square with 1 triangular hole
44 4 # Square with 2 square holes
4] # Square with O hole

npn "point" 23 [

000 300 330 030
110 210 120

400 900 930 430
510 610 620 520
710 810 820 720

1000 1300 1330 10301

Listing 3.1: Definition of a polygon mesh with holes

subdivision.cornersharpness float
This attribute is the sharpness of each specified sharp corner. It must have a
value for each value given in subdivision.cornervertices.

subdivision.creasevertices int
This attribute is a list of crease edges. Each edge is specified as a pair of indices
into the P attribute, like P.indices.

subdivision.creasesharpness float
This attribute is the sharpness of each specified crease. It must have a value for
each pair of values given in subdivision.creasevertices.

3.5 The faceset node

This node is used to provide a way to attach attributes to some faces of another
geometric primitive, such as the mesh node, as shown in Listing 3.2. It has the following
attributes:

faces int
This attribute is a list of indices of faces. It identifies which faces of the original
geometry will be part of this face set.

3.6 The cubiccurves node

This node represents a group of cubic curves. It has the following required attributes:

CHAPTER 3. NODES 27

Create "subdiv" "mesh"

SetAttribute "subdiv"
"nvertices" "int" 4 [4 4 4 4]
IIPII lli pointll 9 [

000 100 200
010 110 210
020 120 222]

"P.indices" "int" 16 [
0143 2354 3476 45871
"subdivision.scheme" "string" 1 "catmull-clark"

Create "setl" "faceset"
SetAttribute "setl"
"faces" "int" 2 [0 3 1]

Connect "setl" "" "subdiv" "facesets
Connect "attributesl" "" "subdiv" "geometryattributes"
Connect "attributes2" "" "setl" "geometryattributes"

Listing 3.2: Definition of a face set on a subdivision surface

nvertices int
The number of vertices for each curve. This must be at least 4. There can be
either a single value or one value per curve.

P point
The positions of the curve vertices. The number of values provided, divided by
nvertices, gives the number of curves which will be rendered.

width float
The width of the curves.

basis string (catmull-rom)
The basis functions used for curve interpolation. Possible choices are:
b-spline — B-spline interpolation.
catmull-rom — Catmull-Rom interpolation.
Attributes may also have a single value, one value per curve, one value per vertex
or one value per vertex of a single curve, reused for all curves. Attributes which fall in

that last category must always specify NSIParamPerVertex. Note that a single curve
is considered a face as far as use of NSIParamPerFace is concerned.

3.7 The linearcurves node

This node represents a group of linearly interpolated curves. It has the following
required attributes:

CHAPTER 3. NODES 28

nvertices int
The number of vertices for each curve. This must be at least 2. There can be
either a single value or one value per curve.

p point
The positions of the curve vertices. The number of values provided, divided by
nvertices, gives the number of curves which will be rendered.

width float
The width of the curves.

Attributes may also have a single value, one value per curve, one value per vertex
or one value per vertex of a single curve, reused for all curves. Attributes which fall in
that last category must always specify NSIParamPerVertex. Note that a single curve
is considered a face as far as use of NSIParamPerFace is concerned.

3.8 The particles node

This geometry node represents a collection of tiny particles. Particles are repensted
by either a disk or a sphere. This primitive is not suitable to render large particles as
these should be represented by other means (e.g. instancing).

P point
A mandatory attribute that specifies the center of each particle.

width float
A mandatory attribute that specifies the width of each particle. It can be specified
for the entire particles node (only one value provided), per-particle or indirectly
through a width.indices attribute.

N normal
The presence of a normal indicates that each particle is to be rendered as an
oriented disk. The orientation of each disk is defined by the provided normal
which can be constant or a per-particle attribute. Each particle is assumed to be
a sphere if a normal is not provided.

id int
This attribute, of the same size as P, assigns a unique identifier to each particle
which must be constant throughout the entire shutter range. Its presence is
necessary in the case where particles are motion blurred and some of them could
appear or disappear during the motion interval. Having such identifiers allows
the renderer to properly render such transient particles. This implies that the
number of ids might vary for each time step of a motion-blurred particle cloud
so the use of NSISetAttributeAtTime is mandatory by definition.

CHAPTER 3. NODES 29

3.9 The procedural node

This node defines geometry that will be loaded in a delayed fashion. The natural
parameter of such a construct is a bounding volume that strictly includes the geometric
primitive:

boundingbox point [2]
Specifies a bounding box for the geometry where

(boundingbox|0], boundingbox[1]) = (min, max).

In addition to this parameter, the procedural node accepts all the parameters of the
NSIEvaluate API call, meaning that file formats accepted by that API call (NSI archives,
dynamic libraries, LUA scripts) are also accepted by this node.

3.10 The environment node

This geometry node defines a sphere of infinite radius. Its only purpose is to render
environment lights, solar lights and directional lights; lights which cannot be efficiently
modeled using area lights. In practical terms, this node is no different than a geometry
node with the exception of shader execution semantics: there is no surface position P,
only a direction I (refer to section 5.5 for more practical details). The following node
attribute is recognized:

angle double (360)
Specifies the cone angle representing the region of the sphere to be sampled. The
angle is measured around the Z+ axis!. If the angle is set to 0, the environment
describes a directional light. Refer to section 5.5 for more about how to specify
light sources.

3.11 The shader node

This node represents an OSL shader, also called layer when part of a shader group. It
has the following required attribute:

shaderfilename string
This is the name of the file which contains the shader’s compiled code.

All other attributes on this node are considered parameters of the shader. They may
either be given values or connected to attributes of other shader nodes to build shader
networks. OSL shader networks must form acyclic graphs or they will be rejected. Refer
to section 5.4 for instructions on OSL network creation and usage.

1To position the environment dome one must connect the node to a transform node and apply the
desired rotation.

CHAPTER 3. NODES 30

3.12 The attributes node

This node is a container for various geometry related rendering attributes that are not
intrinsic to a particular node (for example, one can’t set the topology of a polygonal
mesh using this attributes node). Instances of this node must be connected to the
geometryattributes attribute of either geometric primitives or transform nodes (to
build attributes hierarchies). Attribute values are gathered along the path starting
from the geometric primitive, through all the transform nodes it is connected to, until
the scene root is reached.

When an attribute is defined multiple times along this path, the definition with
the highest priority is selected. In case of conflicting priorities, the definition that
is the closest to the geometric primitive (i.e. the furthest from the root) is selected.
Connections (for shaders, essentially) can also be assigned priorities, which are used in
the same way as for regular attributes. Multiple attributes nodes can be connected to
the same geometry or transform nodes (e.g. one attributes node can set object visibility
and another can set the surface shader) and will all be considered.

This node has the following attributes:

surfaceshader <connection>
The shader node which will be used to shade the surface is connected to this
attribute. A priority (useful for overriding a shader from higher in the scene
graph) can be specified by setting the priority attribute of the connection itself.

displacementshader <connection>
The shader node which will be used to displace the surface is connected to this
attribute. A priority (useful for overriding a shader from higher in the scene
graph) can be specified by setting the priority attribute of the connection itself.

volumeshader <connection>
The shader node which will be used to shade the volume inside the primitive is
connected to this attribute.

ATTR.priority int (0)
Sets the priority of attribute ATTR when gathering attributes in the scene hierar-
chy.

visibility.camera int (1)

visibility.diffuse int (1)

visibility.hair int (1)

visibility.reflection int (1)

visibility.refraction int (1)

visibility.shadow int (1)

visibility.specular int (1)

visibility.volume int (1)

These attributes set visibility for each ray type specified in 0SL. The same effect

CHAPTER 3. NODES 31

could be achieved using shader code (using the raytype () function) but it is
much faster to filter intersections at trace time. A value of 1 makes the object
visible to the corresponding ray type, while 0 makes it invisible.

visibility int (1)
This attribute sets the default visibility for all ray types. When visibility is set
both per ray type and with this default visibility, the attribute with the highest
priority is used. If their priority is the same, the more specific attribute (i.e. per
ray type) is used.

matte int (0)
If this attribute is set to 1, the object becomes a matte for camera rays. Its trans-
parency is used to control the matte opacity and all other shading components
are ignored.

3.13 The transform node

This node represents a geometric transformation. Transform nodes can be chained to-
gether to express transform concatenation, hierarchies and instances. Transform nodes
also accept attributes to implement hierarchical attribute assignment and overrides. It
has the following attributes:

transformationmatrix doublematrix
This is a 4x4 matrix which describes the node’s transformation. Matrices in NSI
post-multiply column vectors so are of the form:

w1, W1, W14 0
wgl w22 ’LUQ3 0
’U)gl 'U}32 'U}33 0
Tx Ty Tz 1
objects <connection>

This is where the transformed objects are connected to. This includes geometry
nodes, other transform nodes and camera nodes.

geometryattributes <connection>
This is where attributes nodes may be connected to affect any geometry trans-
formed by this node. Refer to section 5.2 and section 5.3 for explanation on how
this connection is used.

3.14 The outputdriver node

An output driver defines how an image is transferred to an output destination. The
destination could be a file (e.g. “exr” output driver), frame buffer or a memory address.

CHAPTER 3. NODES 32

It can be connected to the outputdrivers attribute of an output layer node. It has
the following attributes:

drivername string
This is the name of the driver to use. The API of the driver is implementation
specific and is not covered by this documentation.

imagefilename string
Full path to a file for a file-based output driver or some meaningful identifier
depending on the output driver.

embedstatistics int (1)
A value of 1 specifies that statistics will be embedded into the image file.

Any extra attributes are also forwarded to the output driver which may interpret them
however it wishes.

3.15 The outputlayer node

This node describes one specific layer of render output data. It can be connected to
the outputlayers attribute of a screen node. It has the following attributes:

variablename string
This is the name of a variable to output.

variablesource string (shader)
Indicates where the variable to be output is read from. Possible values are:

shader — computed by a shader and output through an OSL closure (such as
outputvariable() or debug()) or the Ci global variable.

attribute — retrieved directly from an attribute with a matching name at-
tached to a geometric primitive.

.,

builtin — generated automatically by the renderer (e.g. "z”, ”alpha”, "N” or
WP”).

layername string
This will be name of the layer as written by the output driver. For example, if
the output driver writes to an EXR file then this will be the name of the layer
inside that file.

scalarformat string (uint8)
Specifies the format in which data will be encoded (quantized) prior to passing
it to the output driver. Possible values are:
int8 — signed 8-bit integer
uint8 — unsigned 8-bit integer

CHAPTER 3. NODES 33

int16 — signed 16-bit integer

uint16 — unsigned 16-bit integer

int32 — signed 32-bit integer

uint32 — unsigned 32-bit integer

half — IEEE 754 half-precision binary floating point (binary16)
float — IEEE 754 single-precision binary floating point (binary32)

layertype string (color)
Specifies the type of data that will be written to the layer. Possible values are:

scalar — A single quantity. Useful for opacity ("alpha”) or depth ("Z”) infor-
mation.

color — A 3-component color.

vector — A 3D point or vector. This will help differentiate the data from a
color in further processing.

quad — A sequence of 4 values, where the fourth value is not an alpha channel.

Each component of those types is stored according to the scalarformat attribute
set on the same outputlayer node.

colorprofile string
The name of an OCIO color profile to apply to rendered image data prior to
quantization.

dithering integer (0)
If set to 1, dithering is applied to integer scalars?. Otherwise, it must be set to
0.

withalpha integer (0)
If set to 1, an alpha channel is included in the output layer. Otherwise, it must
be set to 0.

sortkey integer

This attribute is used as a sorting key when ordering multiple output layer nodes
connected to the same output driver node. Layers with the lowest sortkey
attribute appear first.

lightset <connection>
This connection accepts either light sources or set nodes to which lights are
connected. In this case only listed lights will affect the render of the output
layer. If nothing is connected to this attribute then all lights are rendered.

outputdrivers <connection>
This connection accepts output driver nodes to which the layer’s image will be
sent.

2Tt is sometimes desirable to turn off dithering, for example, when outputting object IDs.

CHAPTER 3. NODES 34

filter string (gaussian)
The type of filter to use when reconstructing the final image from sub-pixel sam-
ples. Possible values are: "box”, "triangle”, ”catmull-rom”, "bessel”, "gaussian”,

”sinc”, “mitchell”, ”blackman-harris”, ”zmin” and ”zmax”.

filterwidth double (2.0)
Diameter in pixels of the reconstruction filter. It is not applied when filter is
"box” or "zmin”.

Any extra attributes are also forwarded to the output driver which may interpret them
however it wishes.

3.16 The screen node

This node describes how the view from a camera node will be rasterized into an output
layer node. It can be connected to the screens attribute of a camera node.

outputlayers <connection>
This connection accepts output layer nodes which will receive a rendered image
of the scene as seen by the camera.

resolution integer[2]
Horizontal and vertical resolution of the rendered image, in pixels.

oversampling integer
The total number of samples (i.e. camera rays) to be computed for each pixel in
the image.

crop float[2]

The region of the image to be rendered. It’s defined by a list of exactly 2 pairs
of floating-point number. Each pair represents a point in NDC space:
e Top-left corner of the crop region
o Bottom-right corner of the crop region
prioritywindow int [2]
For progressive renders, this is the region of the image to be rendered first. It is
two pairs of integers. Each represents pixel coordinates:
e Top-left corner of the high priority region
e Bottom-right corner of the high priority region
screenwindow double[2]

Specifies the screen space region to the rendered. Each pair represents a 2D point
in screen space:

CHAPTER 3. NODES 35

e Bottom-left corner of the region

e Top-right corner of the region

Note that the default screen window is set implicitely by the frame aspect ratio:

Ires

screenwindow = [—f —1] , [f 1} for f =
yres
pixelaspectratio float

Ratio of the physical width to the height of a single pixel. A value of 1.0 corre-
sponds to square pixels.

3.17 Camera Nodes

All camera nodes share a set of common attributes. These are listed below.

screens <connection>
This connection accepts screen nodes which will rasterize an image of the scene
as seen by the camera. Refer to section 5.6 for more information.

shutterrange double
Time interval during which the camera shutter is at least partially open. It’s
defined by a list of exactly two values:

o Time at which the shutter starts opening.

o Time at which the shutter finishes closing.

shutteropening double
A normalized time interval indicating the time at which the shutter is fully open
(a) and the time at which the shutter starts to close (b). These two values define
the top part of a trapezoid filter. The end goal of this feature it to simulate a
mechanical shutter on which open and close movements are not instantaneous.
Figure 3.1 shows the geometry of such a trapezoid filter.

aperture

0 a b 1 t

Figure 3.1: An example shutter opening configuration with a=1/3 and b=2/3.

CHAPTER 3. NODES 36

clippingrange double
Distance of the near and far clipping planes from the camera. It’s defined by a
list of exactly two values:

e Distance to the near clipping plane, in front of which scene objects are
clipped.

o Distance to the far clipping plane, behind which scene objects are clipped.

3.17.1 The orthographiccamera node

This node defines an orthographic camera with a view direction towards the Z— axis.
This camera has no specific attributes.

3.17.2 The perspectivecamera node

This node defines a perspective camera. The canonical camera is viewing in the direc-
tion of the Z— axis. The node is usually connected into a transform node for camera
placement. It has the following attributes:

fov float
The field of view angle, in degrees.

depthoffield.enable integer (0)
Enables depth of field effect for this camera.

depthoffield.fstop double
Relative aperture of the camera.

depthoffield.focallength double
Focal length, in scene units, of the camera lens.

depthoffield.focaldistance double
Distance, in scene units, in front of the camera at which objects will be in focus.

depthoffield.aperture.enable integer (0)
By default, the renderer simulates a circular aperture for depth of field. Enable
this feature to simulate aperture “blades” as on a real camera. This feature
affects the look in out-of-focus regions of the image.

depthoffield.aperture.sides integer (5)
Number of sides of the camera’s aperture. The mininum number of sides is 3.

depthoffield.aperture.angle float (0)
A rotation angle (in degrees) to be applied to the camera’s aperture, in the image
plane.

CHAPTER 3. NODES 37

3.17.3 The fisheyecamera node

Fish eye cameras are useful for a multitude of applications (e.g. virtual reality). This
node accepts these attributes:

fov float
Specifies the field of view for this camera node, in degrees.

mapplng String
Defines one of the supported fisheye mapping functions:
equidistant — Maintains angular distances.

equisolidangle — Every pixel in the image covers the same solid angle.

orthographic — Maintains planar illuminance. This mapping is limited to a
180 field of view.

stereographic — Maintains angles throughout the image. Note that stereo-
graphic mapping fails to work with field of views close to 360 degrees.

3.17.4 The cylindricalcamera node

This node specifies a cylindrical projection camera and has the following attibutes:

fov float
Specifies the vertical field of view, in degrees. The default value is 90.

horizontalfov float
Specifies the horizontal field of view, in degrees. The default value is 360.

eyeoffset float
This offset allows to render stereoscopic cylindrical images by specifying an eye
offset

3.17.5 The sphericalcamera node

This node defines a spherical projection camera. This camera has no specific attributes.

3.17.6 Lens shaders

A lens shader is an OSL network connected to a camera through the lensshader
connection. Such shaders receive the position and the direction of each tracer ray
and can either change or completely discard the traced ray. This allows to implement
distortion maps and cut maps. The following shader variables are provided:

P — Contains ray’s origin.

I — Contains ray’s direction. Setting this variable to zero instructs the renderer not
to trace the corresponding ray sample.

https://en.wikipedia.org/wiki/Fisheye_lens

CHAPTER 3. NODES

time — The time at which the ray is sampled.

(u, v) — Coordinates, in screen space, of the ray being traced.

38

Chapter 4

Script Objects

It is a design goal to provide an easy to use and flexible scripting language for Ns1. The
Lua language has been selected for such a task because of its performance, lightness
and features'. A flexible scripting interface greatly reduces the need to have API
extensions. For example, what is known as “conditional evaluation” and “Ri filters” in

the RenderMan API are superseded by the scripting features of NsI.

NOTE — Although they go hand in hand, scripting objects are not to be
confused with the Lua binding. The binding allows for calling NSI functions
in Lua while scripting objects allow for scene inspection and decision making
in Lua. Script objects can make Lua binding calls to make modifications
to the scene.

To be continued ...

1Lua is also portable and streamable.

39

Chapter 5

Rendering Guidelines
5.1 Basic scene anatomy

(transform) (transform)

(geometry) (camera)

(amibutes) (screen)

(material (osl)) (output layer)

output driver

Figure 5.1: The fundamental building blocks of an NSI scene

A minimal (and useful) NSI scene graph contains the three following components:
1. Geometry linked to the .root node, usually through a transform chain

2. OSL materials linked to scene geometry through an attributes node !

1For the scene to be visible, at least one of the materials has to be emissive.

40

CHAPTER 5. RENDERING GUIDELINES 41

3. At least one outputdriver — outputlayer — screen — camera — .root chain to
describe a view and an output device

The scene graph in Figure 5.1 shows a renderable scene with all the necessary
elements. Note how the connections always lead to the .root node. In this view, a
node with no output connections is not relevant by definition and will be ignored.

5.2 A word — or two — about attributes

(transform) (transform) (attributes)
(attributes) (geometry) (geometry) (geomen'y) (metal)
A

plastic

Figure 5.2: Attribute inheritance and override

Those familiar with the RenderMan standard will remember the various ways to
attach information to elements of the scene (standard attributes, user attributes, prim-
itive variables, construction parameters?). In NsI things are simpler and all attributes
are set through the SetAttribute() mechanism. The only distinction is that some
attributes are required (intrinsic attributes) and some are optional: a mesh node needs
to have P and nvertices defined — otherwise the geometry is invalid®. In OSL shaders,
attributes are accessed using the getattribute() function and this is the only way to
access attributes in NSI. Having one way to set and to access attributes makes things
simpler (a design goal) and allows for extra flexibility (another design goal). Figure 5.2

2Parameters passed to Ri calls to build certain objects. For example, knot vectors passed to
RiNuPatch.

3In this documentation, all intrinsic attributes are usually documented at the beginning of each
section describing a particular node.

CHAPTER 5. RENDERING GUIDELINES 42

shows two features of attribute assignment in NSI:

Attributes inheritance Attributes attached at some parent transform (in this case,
a metal material) affect geometry downstream

Attributes override It is possible to override attributes for a specific geometry by
attaching them to a transform directly upstream (the plastic material overrides
metal upstream)

Note that any non-intrinsic attribute can be inherited and overridden, including vertex
attributes such as texture coordinates.

5.3 Instancing

(transfonn) (transform) (transformj (attributes j
] \] /]
@butﬁ) geometry metal

[

plastic

Figure 5.3: Instancing in NSI with attribute inheritance and per-instance attribute
override

Instancing in NSI is naturally performed by connecting a geometry to more than
one transform (connecting a geometry node into a transform.objects attribute).
Figure 5.3 shows a simple scene with a geometry instanced three times. The scene also
demonstrates how to override an attribute for one particular geometry instance, an
operation very similar to what we have seen in section 5.2. Note that transforms can
also be instanced and this allows for instances of instances using the same semantics.

CHAPTER 5. RENDERING GUIDELINES 43

5.4 Creating osl networks

T oice)

noise

frequency=1.0

lacunarity=2.0

output (attributes |
——
\

/ggx_meta]\—bk.sutfaceshader)
(" read_attribute) 1 read_texture roughness
attributename="st" texturename="dirt.exr" dirtlayer
—
\ output) uv /
output

Figure 5.4: A simple OSL network connected to an attributes node

The semantics used to create OSL networks are the same as for scene creation. Each
shader node in the network corresponds to a shader node which must be created using
NSICreate. Each shader node has implicit attributes corresponding to shader’s param-
eters and connection between said parameters is done using NSIConnect. Figure 5.4
depicts a simple OSL network connected to an attributes node. Some observations:

o Both the source and destination attributes (passed to NSIConnect) must be
present and map to valid and compatible shader parameters (lines 21-23)

e There is no symbolic linking between shader parameters and geometry attributes
(a.k.a. primvars). One has to explicitly use the getattribute() OSL func-
tion to read attributes attached to geometry. In Listing 5.1 this is done in the
read_attribute node (lines 11-14). More about this subject in section 5.2.

OO Ui W~

CHAPTER 5. RENDERING GUIDELINES

44

Create "ggx_metal" "shader"
SetAttribute "ggx"
"shaderfilename

string" 1 ["ggx.oso"]
Create "noise" "shader"
SetAttribute "noise"

"shaderfilename" "string" 1 ["simplenoise.oso"]

"frequency" "float" 1 [1.0]

"lacunarity" "float" 1 [2.0]

Create "read_attribute" "shader"

SetAttribute "read_attribute"
"shaderfilename" "string" 1 ["read_attributes.oso"]
"attributename" "string" 1 ["st"]

Create "read_texture" "shader"

SetAttribute "read_texture"
"shaderfilename" "string" 1 ["read_texture.oso"]
"texturename" "string" 1 ["dirt.exr"]

non non

Connect "read_attribute output" "read_texture uv"
Connect "read_texture" "output" "ggx_metal" "dirtlayer"

Connect "noise" "output" "ggx_metal" "roughness"

Connect the OSL network to an attribute node
Connect "ggx_metal" "Ci" "attr" "surfaceshader"

Listing 5.1: NSI stream to create the OSL network in Figure 5.4

5.5 Lighting in the nodal scene interface

.root

((ransfonn) ([ransfonn) (transfonm)
(environment) (mesh) (mesh)

(attributes j (attributes j (attributes j

(" naright) ("arealight) (" spotlight)

Figure 5.5: Various lights in NST are specified using the same semantics

CHAPTER 5. RENDERING GUIDELINES 45

There are no special light source nodes in NsI (although the environment node, which
defines a sphere of infinite radius, could be considered as a light in practice). Any scene
geometry can become a light source if its surface shader produces an emission() clo-
sure. Some operations on light sources, such as light linking, are done using more
general approaches (see section 5.8). Follows a quick summary on how to create dif-
ferent kinds of light in NSI.

5.5.1 Area lights

Area lights are created by attaching an emissive surface material to geometry. List-
ing 5.2 shows a simple 0OSL shader for such lights (standard OSL emitter).

// Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al. All Rights Reserved.
surface emitter [[string help = "Lambertian emitter material"]]
(

float power = 1 [[string help = "Total power of the light"]],

color Cs = 1 [[string help = "Base color" 11)

{
// Because emission() exzpects a weight in radiance, we must convert by dividing
// the power (in Watts) by the surface area and the factor of PI implied by
// uniform emission over the hemisphere. N.B.: The total power %s BEFORE Cs
// filters the color!
Ci = (power / (M_PI * surfacearea())) * Cs * emission();
}

Listing 5.2: Example emitter for area lights

5.5.2 Spot and point lights

Such lights are created using an epsilon sized geometry (a small disk, a particle, etc.)
and optionally using extra parameters to the emission() closure.

surface spotLight(
color i_color = color(1l),
float intenstity = 1,
float coneAngle = 40,
float dropoff = O,
float penumbraAngle = 0)

color result = i_color * intenstity * M_PI;

/* Cone and penumbra */

float cosangle = dot(-normalize(I), normalize(N));
float coneangle = radians(coneAngle);

float penumbraangle = radians(penumbralAngle);

float coslimit = cos(coneangle / 2);
float cospen = cos((coneangle / 2) + penumbraangle);

CHAPTER 5. RENDERING GUIDELINES

float low = min(cospen, coslimit);
float high = max(cospen, coslimit);

result *= smoothstep(low, high, cosangle);

if (dropoff > 0)
{

result *= clamp(pow(cosangle, 1 + dropoff),0,1);
}

Ci = result / surfacearea() * emission();

46

Listing 5.3: An example OSL spot light shader

5.5.3 Directional and HDR lights

Directional lights are created by using the environment node and setting the angle
attribute to 0. HDR lights are also created using the environment node, albeit with
a 2m cone angle, and reading a high dynamic range texture in the attached surface
shader. Other directional constructs, such as solar lights, can also be obtained using

the environment node.

Since the environment node defines a sphere of infinite radius any connected OSL

shader must only rely on the I variable and disregard P, as is shown in Listing 5.4.

shader hdrlight(string texturename = "")
{

vector wi = transform("world", I);

float longitude = atan2(wi[0], wi[2]);
float latitude = asin(wi[1]);

float s = (longitude + M_PI) / M_2PI;
float t = (latitude + M_PI_2) / M_PI;

Ci = emission() * texture (texturename, s, t);

Listing 5.4: An example OSL shader to do HDR lighting

NOTE — Environment geometry is visible to camera rays by default so it
will appear as a background in renders. To disable this simply switch off
camera visibility on the associated attributes node.

CHAPTER 5. RENDERING GUIDELINES 47

transform

outpul layer) (oulpul layer) (oulput layer

Figure 5.6: NSI graph showing the image output chain

5.6 Defining output drivers and layers

NsI allows for a very flexible image output model. All the following operations are
possible:

o Defining many outputs in the same render (e.g. many EXR outputs)
o Defining many output layers per output (e.g. multi-layer EXRs)
o Rendering different scene views per output layer (e.g. one pass stereo render)

o Rendering images of different resolutions from the same camera (e.g. two view-
ports using the same camera, in an animation software)

Figure 5.6 depicts a NSI scene to create one file with three layers. In this case, all layers
are saved to the same file and the render is using one view. A more complex example
is shown in Figure 5.7: a left and right cameras are used to drive two file outputs, each
having two layers (Ci and Diffuse colors).

CHAPTER 5. RENDERING GUIDELINES 48

(tramform) (tramform)

left screen) (right screen\

(omes) () (o) (<

Figure 5.7: NI graph for a stereo image output

5.7 Light layers

(lransform) (transform J (transform J (lransform)
(n’m ugm) (back ugm) (fill light)

(output layerj (output layerj

T\

(output driver) (output driver) set |

Figure 5.8: Gathering contribution of a subset of lights into one output layer

The ability to render a certain set of lights per output layer has a formal workflow
in NSI. One can use three methods to define the lights used by a given output layer:

CHAPTER 5. RENDERING GUIDELINES 49

1. Connect the geometry defining lights directly to the outputlayer.lightset at-
tribute

2. Create a set of lights using the set node and connect it into outputlayer.lightset
3. A combination of both 1 and 2

Figure 5.8 shows a scene using method 2 to create an output layer containing only
illumination from two lights of the scene. Note that if there are no lights or light
sets connected to the lightset attribute then all lights are rendered. The final output
pixels contain the illumination from the considered lights on the specific surface variable
specified in outputlayer.variablename (section 3.15).

5.8 Inter-object visibility

Some common rendering features are difficult to achieve using attributes and hierarchi-
cal tree structures. One such example is inter-object visibility in a 3D scene. A special
case of this feature is light linking which allows the artist to select which objects a
particular light illuminates, or not. Another classical example is a scene in which a
ghost character is invisible to camera rays but visible in a mirror.

In Ns1 such visibility relationships are implemented using cross-hierarchy connection
between one object and another. In the case of the mirror scene, one would first tag
the character invisible using the visibility attribute and then connect the attribute
node of the receiving object (mirror) to the visibility attribute of the source object
(ghost) to override its visibility status. Essentially, this "injects” a new value for the
ghost visibility for rays coming from the mirror.

Figure 5.9 depicts a scenario where both hierarchy attribute overrides and inter-
object visibility are applied:

e The ghost transform has a visibility attribute set to 0 which makes the ghost
invisible to all ray types

e The hat of the ghost has its own attribute with a visibility set to 1 which makes
it visible to all ray types

e The mirror object has its own attributes node that is used to override the visibility
of the ghost as seen from the mirror. The NSI stream code to achieve that would
look like this:

Connect "mirror_attribute" "" "ghost_attributes" "visibility"
"value" "int" 1 [1]
"priority" "int" 1 [2]

Here, a priority of 2 has been set on the connection for documenting purposes, but
it could have been omitted since connections always override regular attributes
of equivalent priority.

CHAPTER 5. RENDERING GUIDELINES

ghost [transform

[transfonnj (head) (visibility | 0) (mirror)

visibility=1
priority=2

)
i
visibility

Figure 5.9: Visibility override, both hierarchically and inter-object

50

Acknowledgements

Many thanks to John Haddon, Daniel Dresser, David Minor, Moritz Muller and Gre-
gory Ducatel for initiating the first discussions and encouraging us to design a new
scene description API. Bo Zhou and Paolo Berto helped immensely with plug-in de-
sign which ultimately led to improvements in NsI (e.g. adoption of the screen node).
Jordan Thistlewood opened the way for the first integration of NSI into a commercial
plug-in. Stefan Habel did a thorough proofreading of the entire document and gave
many suggestions.
The NsI logo was designed by Paolo Berto.

o1

List of Figures

3.1

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9

An example shutter opening configuration with a=1/3 and b=2/3. 35
The fundamental building blocks of an NSI scene 40
Attribute inheritance and override 41
Instancing in NSI with attribute inheritance and per-instance attribute over-

ride . .o 42
A simple OSL network connected to an attributes node 43
Various lights in NSI are specified using the same semantics 44
NsI graph showing the image output chain 47
NsI graph for a stereo image output 48
Gathering contribution of a subset of lights into one output layer 48
Visibility override, both hierarchically and inter-object 50

List of Tables

2.1
2.2
2.3

3.1

NSI functions o o o e e 17
NSItYyPes o o e 17
NSI error codes 19
NSI NOdeS OVEIVIEW v v v o i e e e e e e e e e e e 21

52

Listings

2.1
3.1
3.2
5.1
5.2
5.3
5.4

Shader creation example in Lua L. 16
Definition of a polygon mesh with holes 26
Definition of a face set on a subdivision surface 27
NSI stream to create the OSL network in Figure 5.4 44
Example emitter for area lights 45
An example OSL spot light shader 45
An example OSL shader to do HDR lighting 46

93

Index

.global node, 22
.global.bucketorder, 23
.global.license.hold, 23
.global.license.server, 22
.global license.wait, 23
.global.maximumraydepth.diffuse, 23
.global.maximumraydepth.hair, 23
.global.maximumraydepth.reflection,
23
.global.maximumraydepth.refraction,
23
.global.maximumraydepth.volume, 23
.global.maximumraylength.diffuse, 24
.global.maximumraylength.hair, 24
.global.maximumraylength.reflection,
24
.global.maximumraylength.refraction,
24
.global.maximumraylength.specular,
24
.global.maximumraylength.volume, 24
.global.networkcache.directory, 22
.global.networkcache.size, 22
.global.numberofthreads, 22
.global.show.displacement, 24
.global.show.osl.subsurface, 24
.global.statistics.filename, 24
.global.statistics.progress, 24
.global.texturedirectory, 22
.global.texturememory, 22
.root node, 22, 41

o4

archive, 13
attributes
inheritance, 42
intrinsic, 41
override, 42
renderman, 41
attributes hierarchies, 30
attributes lookup order, 30

binary nsi stream, 8
bucketorder, 23

cameras, 3538
cylindrical, 37
fish eye, 37
orthographic, 36
perspective, 36
spherical, 37
cancel render, 15
color profile, 33
conditional evaluation, 39
creating a shader in Lua, 16
creating osl network, 43
cylindricalcamera, 37
eyeoffset, 37
fov, 37
horizontalfov, 37

design goals, 4
directional light, 46
dithering, 33

enum

INDEX

attribute flags, 9

attribute types, 8

error levels, 14
equidistant fisheye mapping, 37
equisolidangle fisheye mapping, 37
error reporting, 13
evaluating Lua scripts, 13
expressing relatioships, 25
eyeoffset, 37

face sets, 26

fisheye camera, 37
frame buffer output, 31
frame number, 15

geometry attributes, 30
ghost, 49
global node, 22-24

hdr lighting, 46
horizontalfov, 37

ids, for particles, 28
inheritance of attributes, 42
inline archive, 13
instances of instances, 42
instancing, 42

int16, 32

int32, 33

int8, 32

interactive render, 15
intrinsic attributes, 30, 41
ipr, 15

lens shaders, 37
license.hold, 23
license.server, 22
license.wait, 23
light

directional, 46

solar, 46

spot, 45
light linking, 49
light sets, 25

95

lights, 4

live rendering, 4

Lua, 15
param.count, 17
parameters, 16

lua
error types, 19
functions, 16
nodes, 21
utilities.ReportError, 19

lua scripting, 4

motion blur, 11
multi-threading, 4

networkcache.directory, 22
networkcache.size, 22
node
cubic curves, 26
faceset, 26
global, 22-24
linear curves, 27
mesh, 25
outputdriver, 31
root, 22
set, 25
shader, 29
transform, 31
nsi
extensibility, 5
interactive rendering, 4
performance, 4
scripting, 4
serialization, b
simplicity, 4
stream, 19
nsi stream, 8
numberofthreads, 22

object linking, 49

object visibility, 30
0ocCI0, 33

orthographic camera, 36

INDEX

orthographic fisheye mapping, 37
osl
network creation, 43
node, 29
OSL integration, 4
output driver api, 32
override of attributes, 42

particle ids, 28

pause render, 15
perspective camera, 36
polygon mesh, 25
primitive variables, 41
progressive render, 15

quantization, 32-33

render
action, 14
interactive, 15
pause, 15
progressive, 15
resume, 15
start, 14
stop, 15
synchronize, 15
wait, 14
rendering attributes, 30
rendering in a different process, 19
renderman
attributes, 41
resume render, 15
ri conditionals, 39
root node, 22

scripting, 4
serialization, 5
setting attributes, 10
setting rendering attributes, 30
shader
node, 29
shader creation in Lua, 16
solar light, 46

56

sortkey, 33
spherical camera, 37
spot light, 45
start render, 14
stereo rendering, 47
stereographic fisheye mapping, 37
stop render, 15
struct

NSIParam t, 8
suspend render, 15
synchronize render, 15

texturedirectory, 22
texturememory, 22
type for attribute data, 8

uint16, 33

uint32, 33

uint8, 32

user attributes, 41

visibility, 30

wait for render, 14
withalpha, 33

	Contents
	Background
	The Interface
	The interface abstraction
	The C API
	Context handling
	Passing optional parameters
	Node creation
	Setting attributes
	Making connections
	Evaluating procedurals
	Error reporting
	Rendering

	The Lua API
	API calls
	Function parameters format
	Evaluating a Lua script
	Passing parameters to a Lua script
	Reporting errors from a Lua script

	The C++ API wrappers
	The interface stream

	Nodes
	The root node
	The global node
	The set node
	The mesh node
	The faceset node
	The cubiccurves node
	The linearcurves node
	The particles node
	The procedural node
	The environment node
	The shader node
	The attributes node
	The transform node
	The outputdriver node
	The outputlayer node
	The screen node
	Camera Nodes
	The orthographiccamera node
	The perspectivecamera node
	The fisheyecamera node
	The cylindricalcamera node
	The sphericalcamera node
	Lens shaders

	Script Objects
	Rendering Guidelines
	Basic scene anatomy
	A word – or two – about attributes
	Instancing
	Creating osl networks
	Lighting in the nodal scene interface
	Area lights
	Spot and point lights
	Directional and HDR lights

	Defining output drivers and layers
	Light layers
	Inter-object visibility

	List of Figures
	List of Tables
	Index

